How to solve the surface integral...
$begingroup$
Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?
Ok so this is what I tried to do:
Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,
$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$
So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.
Can anyone provide some other way? How to solve this problem? Thanks.
calculus surface-integrals
$endgroup$
add a comment |
$begingroup$
Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?
Ok so this is what I tried to do:
Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,
$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$
So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.
Can anyone provide some other way? How to solve this problem? Thanks.
calculus surface-integrals
$endgroup$
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23
add a comment |
$begingroup$
Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?
Ok so this is what I tried to do:
Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,
$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$
So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.
Can anyone provide some other way? How to solve this problem? Thanks.
calculus surface-integrals
$endgroup$
Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?
Ok so this is what I tried to do:
Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,
$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$
So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.
Can anyone provide some other way? How to solve this problem? Thanks.
calculus surface-integrals
calculus surface-integrals
edited Jan 19 at 3:19
Kushal Bhuyan
asked Jan 19 at 3:16


Kushal BhuyanKushal Bhuyan
4,99121245
4,99121245
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23
add a comment |
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall
begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}
Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.
$endgroup$
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078983%2fhow-to-solve-the-surface-integral-int-int-s-frac2x-pi-siny2xe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall
begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}
Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.
$endgroup$
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
add a comment |
$begingroup$
Recall
begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}
Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.
$endgroup$
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
add a comment |
$begingroup$
Recall
begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}
Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.
$endgroup$
Recall
begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}
Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.
answered Jan 19 at 3:26
Jacky ChongJacky Chong
19k21129
19k21129
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
add a comment |
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078983%2fhow-to-solve-the-surface-integral-int-int-s-frac2x-pi-siny2xe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19
$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19
$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20
$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21
$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23