How to solve the surface integral...












0












$begingroup$



Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?




Ok so this is what I tried to do:



Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,



$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$



So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.



Can anyone provide some other way? How to solve this problem? Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean $x^2+y^2+z^2=1$ right?
    $endgroup$
    – Jacky Chong
    Jan 19 at 3:19










  • $begingroup$
    Change to spherical coordinates.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:19










  • $begingroup$
    @JackyChong yes. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:20










  • $begingroup$
    @lightxbulb the integrand inside the double integral?
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:21










  • $begingroup$
    All variables. And the limits. And the Jacobian.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:23
















0












$begingroup$



Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?




Ok so this is what I tried to do:



Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,



$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$



So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.



Can anyone provide some other way? How to solve this problem? Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean $x^2+y^2+z^2=1$ right?
    $endgroup$
    – Jacky Chong
    Jan 19 at 3:19










  • $begingroup$
    Change to spherical coordinates.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:19










  • $begingroup$
    @JackyChong yes. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:20










  • $begingroup$
    @lightxbulb the integrand inside the double integral?
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:21










  • $begingroup$
    All variables. And the limits. And the Jacobian.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:23














0












0








0





$begingroup$



Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?




Ok so this is what I tried to do:



Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,



$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$



So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.



Can anyone provide some other way? How to solve this problem? Thanks.










share|cite|improve this question











$endgroup$





Consider the unit sphere $S={(x,y,z)in {R^3}:x^2+y^2+z^2=1}$ and the unit normal vector $bar{n}$ at each point $(x,y,z)$ on $S$. Then the value of the surface integral $$intint_{S}{(frac{2x}{pi}+sin(y^2))x+(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z}dsigma$$ is____?




Ok so this is what I tried to do:



Since this is a surface integral over a sphere, therefore I thought to convert it into a triple integral by using Gauss's Theorem, viz,



$$intint_{S}(f ~dy ~dz+g~dz~dx+h~dx~dy)=intintint_{E}(f_x+g_y+h_z)~dx~dy~dz$$



So $f=(e^z-frac{y}{pi})y+(frac{2z}{pi}+sin^2y)z$, $~g=0$ (since there is no term involving $~dz~dx$), and $h=(frac{2x}{pi}+sin(y^2))x$. At this point I am stuck. This way doesnot provide any sensible conclusion.



Can anyone provide some other way? How to solve this problem? Thanks.







calculus surface-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 3:19







Kushal Bhuyan

















asked Jan 19 at 3:16









Kushal BhuyanKushal Bhuyan

4,99121245




4,99121245












  • $begingroup$
    You mean $x^2+y^2+z^2=1$ right?
    $endgroup$
    – Jacky Chong
    Jan 19 at 3:19










  • $begingroup$
    Change to spherical coordinates.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:19










  • $begingroup$
    @JackyChong yes. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:20










  • $begingroup$
    @lightxbulb the integrand inside the double integral?
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:21










  • $begingroup$
    All variables. And the limits. And the Jacobian.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:23


















  • $begingroup$
    You mean $x^2+y^2+z^2=1$ right?
    $endgroup$
    – Jacky Chong
    Jan 19 at 3:19










  • $begingroup$
    Change to spherical coordinates.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:19










  • $begingroup$
    @JackyChong yes. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:20










  • $begingroup$
    @lightxbulb the integrand inside the double integral?
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:21










  • $begingroup$
    All variables. And the limits. And the Jacobian.
    $endgroup$
    – lightxbulb
    Jan 19 at 3:23
















$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19




$begingroup$
You mean $x^2+y^2+z^2=1$ right?
$endgroup$
– Jacky Chong
Jan 19 at 3:19












$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19




$begingroup$
Change to spherical coordinates.
$endgroup$
– lightxbulb
Jan 19 at 3:19












$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20




$begingroup$
@JackyChong yes. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:20












$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21




$begingroup$
@lightxbulb the integrand inside the double integral?
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:21












$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23




$begingroup$
All variables. And the limits. And the Jacobian.
$endgroup$
– lightxbulb
Jan 19 at 3:23










1 Answer
1






active

oldest

votes


















4












$begingroup$

Recall



begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}

Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:30













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078983%2fhow-to-solve-the-surface-integral-int-int-s-frac2x-pi-siny2xe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Recall



begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}

Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:30


















4












$begingroup$

Recall



begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}

Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:30
















4












4








4





$begingroup$

Recall



begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}

Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.






share|cite|improve this answer









$endgroup$



Recall



begin{align}
iint_Sigma mathbf{F}cdotmathbf{n} dS = iiint_D operatorname{div}mathbf{F} dV
end{align}

Here $mathbf{F} = (frac{2x}{pi}+sin(y^2))mathbf{i}+(e^z-frac{y}{pi})mathbf{j}+(frac{2z}{pi}+sin^2(y))mathbf{k}$ where $operatorname{div}mathbf{F} = frac{3}{pi}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 19 at 3:26









Jacky ChongJacky Chong

19k21129




19k21129












  • $begingroup$
    Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:30




















  • $begingroup$
    Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
    $endgroup$
    – Kushal Bhuyan
    Jan 19 at 3:30


















$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30






$begingroup$
Ok so the volume of the sphere is $frac{4}{3}pi$, which will give the value of the triple integral to be 4. Thanks.
$endgroup$
– Kushal Bhuyan
Jan 19 at 3:30




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078983%2fhow-to-solve-the-surface-integral-int-int-s-frac2x-pi-siny2xe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith