How to sum: $sum_{n=0}^{infty} (n^2+2n+1)·(2·ln(x))^n$
$begingroup$
How to sum: $$sum_{n=0}^{infty} (n^2+2n+1)·(2·ln(x))^n$$
I've tried considering $$S_N=1+4(2ln(x))+9(2ln(x))^2+...+(N^2+2N+1)(2ln(x))^N$$
and $$(2ln(x))·S_N=1(2ln(x))+4(2ln(x))^2+...+((N-1)^2+2(N-1)+1)(2ln(x))^N+(N^2+2N+1)(2ln(x))^{N+1}$$
So $S_N-(2ln(x))S_N=1+3(2(ln(x))+5(2(ln(x))+...+$
But is this leading me to something? Is it the correct way to sum that?
Assume the series converges ($xin(e^{-1/2},e^{1/2})$)
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
How to sum: $$sum_{n=0}^{infty} (n^2+2n+1)·(2·ln(x))^n$$
I've tried considering $$S_N=1+4(2ln(x))+9(2ln(x))^2+...+(N^2+2N+1)(2ln(x))^N$$
and $$(2ln(x))·S_N=1(2ln(x))+4(2ln(x))^2+...+((N-1)^2+2(N-1)+1)(2ln(x))^N+(N^2+2N+1)(2ln(x))^{N+1}$$
So $S_N-(2ln(x))S_N=1+3(2(ln(x))+5(2(ln(x))+...+$
But is this leading me to something? Is it the correct way to sum that?
Assume the series converges ($xin(e^{-1/2},e^{1/2})$)
real-analysis sequences-and-series
$endgroup$
1
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13
add a comment |
$begingroup$
How to sum: $$sum_{n=0}^{infty} (n^2+2n+1)·(2·ln(x))^n$$
I've tried considering $$S_N=1+4(2ln(x))+9(2ln(x))^2+...+(N^2+2N+1)(2ln(x))^N$$
and $$(2ln(x))·S_N=1(2ln(x))+4(2ln(x))^2+...+((N-1)^2+2(N-1)+1)(2ln(x))^N+(N^2+2N+1)(2ln(x))^{N+1}$$
So $S_N-(2ln(x))S_N=1+3(2(ln(x))+5(2(ln(x))+...+$
But is this leading me to something? Is it the correct way to sum that?
Assume the series converges ($xin(e^{-1/2},e^{1/2})$)
real-analysis sequences-and-series
$endgroup$
How to sum: $$sum_{n=0}^{infty} (n^2+2n+1)·(2·ln(x))^n$$
I've tried considering $$S_N=1+4(2ln(x))+9(2ln(x))^2+...+(N^2+2N+1)(2ln(x))^N$$
and $$(2ln(x))·S_N=1(2ln(x))+4(2ln(x))^2+...+((N-1)^2+2(N-1)+1)(2ln(x))^N+(N^2+2N+1)(2ln(x))^{N+1}$$
So $S_N-(2ln(x))S_N=1+3(2(ln(x))+5(2(ln(x))+...+$
But is this leading me to something? Is it the correct way to sum that?
Assume the series converges ($xin(e^{-1/2},e^{1/2})$)
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Jan 23 at 17:11


Martin Sleziak
44.9k10119273
44.9k10119273
asked Jan 23 at 17:08


iggykimiiggykimi
30710
30710
1
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13
add a comment |
1
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13
1
1
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$sum_{nge0}(n^2+2n+1)y^n = sum_{nge0}(n+2)(n+1)y^n-sum_{nge0}(n+1)y^n = frac{2}{(1-y)^3}-frac{1}{(1-y)}^2$$
Plug $y=2ln x$ in the solution.
$endgroup$
add a comment |
$begingroup$
Starting from $frac{1}{1-u}=sum_{n=0}^{infty}u^n$ you get
- $frac{d}{du}left(frac{u}{1-u}right) = sum_{n=0}^{infty}(n+1)u^n$
$Rightarrow frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = boxed{sum_{n=0}^{infty}(n+1)^2u^n}$ (This is your sum for $u =2 ln x$.)- Differentiating gives:
$$frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = frac{1+u}{(1-u)^3} stackrel{|ln x| < frac{1}{2}}{Rightarrow} boxed{sum_{n=0}^{infty}(n+1)^2(2ln x)^n = frac{1+2ln x}{(1-2ln x)^3}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084769%2fhow-to-sum-sum-n-0-infty-n22n1-2-lnxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$sum_{nge0}(n^2+2n+1)y^n = sum_{nge0}(n+2)(n+1)y^n-sum_{nge0}(n+1)y^n = frac{2}{(1-y)^3}-frac{1}{(1-y)}^2$$
Plug $y=2ln x$ in the solution.
$endgroup$
add a comment |
$begingroup$
$$sum_{nge0}(n^2+2n+1)y^n = sum_{nge0}(n+2)(n+1)y^n-sum_{nge0}(n+1)y^n = frac{2}{(1-y)^3}-frac{1}{(1-y)}^2$$
Plug $y=2ln x$ in the solution.
$endgroup$
add a comment |
$begingroup$
$$sum_{nge0}(n^2+2n+1)y^n = sum_{nge0}(n+2)(n+1)y^n-sum_{nge0}(n+1)y^n = frac{2}{(1-y)^3}-frac{1}{(1-y)}^2$$
Plug $y=2ln x$ in the solution.
$endgroup$
$$sum_{nge0}(n^2+2n+1)y^n = sum_{nge0}(n+2)(n+1)y^n-sum_{nge0}(n+1)y^n = frac{2}{(1-y)^3}-frac{1}{(1-y)}^2$$
Plug $y=2ln x$ in the solution.
answered Jan 23 at 17:13


Nicolas FRANCOISNicolas FRANCOIS
3,8021516
3,8021516
add a comment |
add a comment |
$begingroup$
Starting from $frac{1}{1-u}=sum_{n=0}^{infty}u^n$ you get
- $frac{d}{du}left(frac{u}{1-u}right) = sum_{n=0}^{infty}(n+1)u^n$
$Rightarrow frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = boxed{sum_{n=0}^{infty}(n+1)^2u^n}$ (This is your sum for $u =2 ln x$.)- Differentiating gives:
$$frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = frac{1+u}{(1-u)^3} stackrel{|ln x| < frac{1}{2}}{Rightarrow} boxed{sum_{n=0}^{infty}(n+1)^2(2ln x)^n = frac{1+2ln x}{(1-2ln x)^3}}$$
$endgroup$
add a comment |
$begingroup$
Starting from $frac{1}{1-u}=sum_{n=0}^{infty}u^n$ you get
- $frac{d}{du}left(frac{u}{1-u}right) = sum_{n=0}^{infty}(n+1)u^n$
$Rightarrow frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = boxed{sum_{n=0}^{infty}(n+1)^2u^n}$ (This is your sum for $u =2 ln x$.)- Differentiating gives:
$$frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = frac{1+u}{(1-u)^3} stackrel{|ln x| < frac{1}{2}}{Rightarrow} boxed{sum_{n=0}^{infty}(n+1)^2(2ln x)^n = frac{1+2ln x}{(1-2ln x)^3}}$$
$endgroup$
add a comment |
$begingroup$
Starting from $frac{1}{1-u}=sum_{n=0}^{infty}u^n$ you get
- $frac{d}{du}left(frac{u}{1-u}right) = sum_{n=0}^{infty}(n+1)u^n$
$Rightarrow frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = boxed{sum_{n=0}^{infty}(n+1)^2u^n}$ (This is your sum for $u =2 ln x$.)- Differentiating gives:
$$frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = frac{1+u}{(1-u)^3} stackrel{|ln x| < frac{1}{2}}{Rightarrow} boxed{sum_{n=0}^{infty}(n+1)^2(2ln x)^n = frac{1+2ln x}{(1-2ln x)^3}}$$
$endgroup$
Starting from $frac{1}{1-u}=sum_{n=0}^{infty}u^n$ you get
- $frac{d}{du}left(frac{u}{1-u}right) = sum_{n=0}^{infty}(n+1)u^n$
$Rightarrow frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = boxed{sum_{n=0}^{infty}(n+1)^2u^n}$ (This is your sum for $u =2 ln x$.)- Differentiating gives:
$$frac{d}{du}left(ufrac{d}{du}left(frac{u}{1-u}right)right) = frac{1+u}{(1-u)^3} stackrel{|ln x| < frac{1}{2}}{Rightarrow} boxed{sum_{n=0}^{infty}(n+1)^2(2ln x)^n = frac{1+2ln x}{(1-2ln x)^3}}$$
answered Jan 23 at 17:51
trancelocationtrancelocation
12.6k1826
12.6k1826
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084769%2fhow-to-sum-sum-n-0-infty-n22n1-2-lnxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
If you like, first let $y = 2 log x$ and compute the power series, then plug it back. Seems that your method could work, if no calculation errors.
$endgroup$
– xbh
Jan 23 at 17:10
$begingroup$
@xbh thanks. There would be a faster method? It's quite tedious doing it like this.
$endgroup$
– iggykimi
Jan 23 at 17:13