Inequality with $ax^2+bx+c$
$begingroup$
Let $a,b,c,x,y > 0$ reals prove that:
$$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
What I have done is this:
$$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
$$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
From here I have two cases:
$ 4ac-b^2 >0$
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
This is just Cauchy.
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
Now the second case I have trouble proving : $4ac-b^2 < 0$.
If someone can take a look and give me a solution or a hint I would much appreciate.
inequality cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
Let $a,b,c,x,y > 0$ reals prove that:
$$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
What I have done is this:
$$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
$$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
From here I have two cases:
$ 4ac-b^2 >0$
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
This is just Cauchy.
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
Now the second case I have trouble proving : $4ac-b^2 < 0$.
If someone can take a look and give me a solution or a hint I would much appreciate.
inequality cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
Let $a,b,c,x,y > 0$ reals prove that:
$$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
What I have done is this:
$$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
$$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
From here I have two cases:
$ 4ac-b^2 >0$
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
This is just Cauchy.
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
Now the second case I have trouble proving : $4ac-b^2 < 0$.
If someone can take a look and give me a solution or a hint I would much appreciate.
inequality cauchy-schwarz-inequality
$endgroup$
Let $a,b,c,x,y > 0$ reals prove that:
$$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
What I have done is this:
$$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
$$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
From here I have two cases:
$ 4ac-b^2 >0$
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
This is just Cauchy.
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
Now the second case I have trouble proving : $4ac-b^2 < 0$.
If someone can take a look and give me a solution or a hint I would much appreciate.
inequality cauchy-schwarz-inequality
inequality cauchy-schwarz-inequality
asked Jan 23 at 17:24
mathlearningmathlearning
1787
1787
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Use AM-GM inequality to obtain
$$
ax+b+frac{c}{x}ge b+2sqrt{ac},
$$
$$
ay-b+frac{c}{y}ge -b+2sqrt{ac}.
$$
$endgroup$
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
add a comment |
$begingroup$
It's wrong.
Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$
$endgroup$
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084794%2finequality-with-ax2bxc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use AM-GM inequality to obtain
$$
ax+b+frac{c}{x}ge b+2sqrt{ac},
$$
$$
ay-b+frac{c}{y}ge -b+2sqrt{ac}.
$$
$endgroup$
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
add a comment |
$begingroup$
Hint: Use AM-GM inequality to obtain
$$
ax+b+frac{c}{x}ge b+2sqrt{ac},
$$
$$
ay-b+frac{c}{y}ge -b+2sqrt{ac}.
$$
$endgroup$
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
add a comment |
$begingroup$
Hint: Use AM-GM inequality to obtain
$$
ax+b+frac{c}{x}ge b+2sqrt{ac},
$$
$$
ay-b+frac{c}{y}ge -b+2sqrt{ac}.
$$
$endgroup$
Hint: Use AM-GM inequality to obtain
$$
ax+b+frac{c}{x}ge b+2sqrt{ac},
$$
$$
ay-b+frac{c}{y}ge -b+2sqrt{ac}.
$$
answered Jan 23 at 17:29


SongSong
17.4k21246
17.4k21246
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
add a comment |
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
$begingroup$
Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
$endgroup$
– mathlearning
Jan 23 at 17:31
1
1
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
@ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
$endgroup$
– Song
Jan 23 at 17:45
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
$endgroup$
– mathlearning
Jan 23 at 17:47
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
$begingroup$
@ovetz13 Yep, I think so.
$endgroup$
– Song
Jan 23 at 17:48
add a comment |
$begingroup$
It's wrong.
Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$
$endgroup$
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
add a comment |
$begingroup$
It's wrong.
Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$
$endgroup$
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
add a comment |
$begingroup$
It's wrong.
Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$
$endgroup$
It's wrong.
Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$
answered Jan 23 at 21:03
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
add a comment |
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
$begingroup$
I know. Thank you.
$endgroup$
– mathlearning
Jan 23 at 21:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084794%2finequality-with-ax2bxc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown