Inequality with $ax^2+bx+c$












0












$begingroup$


Let $a,b,c,x,y > 0$ reals prove that:
$$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
What I have done is this:
$$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
$$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
From here I have two cases:
$ 4ac-b^2 >0$
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
This is just Cauchy.
$$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
$$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
Now the second case I have trouble proving : $4ac-b^2 < 0$.
If someone can take a look and give me a solution or a hint I would much appreciate.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $a,b,c,x,y > 0$ reals prove that:
    $$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
    What I have done is this:
    $$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
    $$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
    From here I have two cases:
    $ 4ac-b^2 >0$
    $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
    $$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
    This is just Cauchy.
    $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
    $$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
    Now the second case I have trouble proving : $4ac-b^2 < 0$.
    If someone can take a look and give me a solution or a hint I would much appreciate.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $a,b,c,x,y > 0$ reals prove that:
      $$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
      What I have done is this:
      $$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
      $$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
      From here I have two cases:
      $ 4ac-b^2 >0$
      $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
      $$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
      This is just Cauchy.
      $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
      $$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
      Now the second case I have trouble proving : $4ac-b^2 < 0$.
      If someone can take a look and give me a solution or a hint I would much appreciate.










      share|cite|improve this question









      $endgroup$




      Let $a,b,c,x,y > 0$ reals prove that:
      $$(ax^2+bx+c)(ay^2-by+c) geq (4ac-b^2)xy$$
      What I have done is this:
      $$ax^2+bx+c=a left (x+frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
      $$ay^2-by+c=a left (y-frac{b}{2a} right)^2+frac{4ac-b^2}{4a}$$
      From here I have two cases:
      $ 4ac-b^2 >0$
      $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
      $$left [ sqrt a left (x+frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}+ sqrt a left (y-frac{b}{2a} right)cdotsqrt frac{4ac-b^2}{4a}right ]^2$$
      This is just Cauchy.
      $$left[ sqrt{a}^2 left (x+frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]cdot left[ sqrt{a}^2 left (y-frac{b}{2a} right)^2+sqrt frac{4ac-b^2}{4a}^2right ]geq$$
      $$a cdot frac{4ac-b^2}{4a} left ( x+frac{b}{2a}+y-frac{b}{2a} right )^2=(4ac-b^2) left ( frac{x+y}{2}right )^2geq (4ac-b^2)xy. $$
      Now the second case I have trouble proving : $4ac-b^2 < 0$.
      If someone can take a look and give me a solution or a hint I would much appreciate.







      inequality cauchy-schwarz-inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 23 at 17:24









      mathlearningmathlearning

      1787




      1787






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: Use AM-GM inequality to obtain
          $$
          ax+b+frac{c}{x}ge b+2sqrt{ac},
          $$

          $$
          ay-b+frac{c}{y}ge -b+2sqrt{ac}.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
            $endgroup$
            – mathlearning
            Jan 23 at 17:31






          • 1




            $begingroup$
            @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
            $endgroup$
            – Song
            Jan 23 at 17:45












          • $begingroup$
            So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
            $endgroup$
            – mathlearning
            Jan 23 at 17:47










          • $begingroup$
            @ovetz13 Yep, I think so.
            $endgroup$
            – Song
            Jan 23 at 17:48



















          1












          $begingroup$

          It's wrong.



          Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know. Thank you.
            $endgroup$
            – mathlearning
            Jan 23 at 21:04











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084794%2finequality-with-ax2bxc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint: Use AM-GM inequality to obtain
          $$
          ax+b+frac{c}{x}ge b+2sqrt{ac},
          $$

          $$
          ay-b+frac{c}{y}ge -b+2sqrt{ac}.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
            $endgroup$
            – mathlearning
            Jan 23 at 17:31






          • 1




            $begingroup$
            @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
            $endgroup$
            – Song
            Jan 23 at 17:45












          • $begingroup$
            So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
            $endgroup$
            – mathlearning
            Jan 23 at 17:47










          • $begingroup$
            @ovetz13 Yep, I think so.
            $endgroup$
            – Song
            Jan 23 at 17:48
















          1












          $begingroup$

          Hint: Use AM-GM inequality to obtain
          $$
          ax+b+frac{c}{x}ge b+2sqrt{ac},
          $$

          $$
          ay-b+frac{c}{y}ge -b+2sqrt{ac}.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
            $endgroup$
            – mathlearning
            Jan 23 at 17:31






          • 1




            $begingroup$
            @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
            $endgroup$
            – Song
            Jan 23 at 17:45












          • $begingroup$
            So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
            $endgroup$
            – mathlearning
            Jan 23 at 17:47










          • $begingroup$
            @ovetz13 Yep, I think so.
            $endgroup$
            – Song
            Jan 23 at 17:48














          1












          1








          1





          $begingroup$

          Hint: Use AM-GM inequality to obtain
          $$
          ax+b+frac{c}{x}ge b+2sqrt{ac},
          $$

          $$
          ay-b+frac{c}{y}ge -b+2sqrt{ac}.
          $$






          share|cite|improve this answer









          $endgroup$



          Hint: Use AM-GM inequality to obtain
          $$
          ax+b+frac{c}{x}ge b+2sqrt{ac},
          $$

          $$
          ay-b+frac{c}{y}ge -b+2sqrt{ac}.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 17:29









          SongSong

          17.4k21246




          17.4k21246












          • $begingroup$
            Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
            $endgroup$
            – mathlearning
            Jan 23 at 17:31






          • 1




            $begingroup$
            @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
            $endgroup$
            – Song
            Jan 23 at 17:45












          • $begingroup$
            So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
            $endgroup$
            – mathlearning
            Jan 23 at 17:47










          • $begingroup$
            @ovetz13 Yep, I think so.
            $endgroup$
            – Song
            Jan 23 at 17:48


















          • $begingroup$
            Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
            $endgroup$
            – mathlearning
            Jan 23 at 17:31






          • 1




            $begingroup$
            @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
            $endgroup$
            – Song
            Jan 23 at 17:45












          • $begingroup$
            So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
            $endgroup$
            – mathlearning
            Jan 23 at 17:47










          • $begingroup$
            @ovetz13 Yep, I think so.
            $endgroup$
            – Song
            Jan 23 at 17:48
















          $begingroup$
          Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
          $endgroup$
          – mathlearning
          Jan 23 at 17:31




          $begingroup$
          Yes. I have tried this too. But it's true only if $4ac-b^2>0$. And I don't know what to do if $4ac-b^2<0$
          $endgroup$
          – mathlearning
          Jan 23 at 17:31




          1




          1




          $begingroup$
          @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
          $endgroup$
          – Song
          Jan 23 at 17:45






          $begingroup$
          @ovetz13 Umm... the given inequality seems to fail if $4ac-b^2< 0$. Look at the example: $(a,b,c)=(1,3,1)$. Then for $(x,y)=(3,1)$, the LHS becomes $-19$ while the RHS is $-15$. It fails to hold $-19geqslant -15$.
          $endgroup$
          – Song
          Jan 23 at 17:45














          $begingroup$
          So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
          $endgroup$
          – mathlearning
          Jan 23 at 17:47




          $begingroup$
          So I can say that the given inequality is true only if $4ac-b^2>0$. Problem solved I guess.
          $endgroup$
          – mathlearning
          Jan 23 at 17:47












          $begingroup$
          @ovetz13 Yep, I think so.
          $endgroup$
          – Song
          Jan 23 at 17:48




          $begingroup$
          @ovetz13 Yep, I think so.
          $endgroup$
          – Song
          Jan 23 at 17:48











          1












          $begingroup$

          It's wrong.



          Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know. Thank you.
            $endgroup$
            – mathlearning
            Jan 23 at 21:04
















          1












          $begingroup$

          It's wrong.



          Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I know. Thank you.
            $endgroup$
            – mathlearning
            Jan 23 at 21:04














          1












          1








          1





          $begingroup$

          It's wrong.



          Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$






          share|cite|improve this answer









          $endgroup$



          It's wrong.



          Try $b=c=1$, $x=1$, $y=3$ and $a=frac{1}{3}.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 21:03









          Michael RozenbergMichael Rozenberg

          108k1895200




          108k1895200












          • $begingroup$
            I know. Thank you.
            $endgroup$
            – mathlearning
            Jan 23 at 21:04


















          • $begingroup$
            I know. Thank you.
            $endgroup$
            – mathlearning
            Jan 23 at 21:04
















          $begingroup$
          I know. Thank you.
          $endgroup$
          – mathlearning
          Jan 23 at 21:04




          $begingroup$
          I know. Thank you.
          $endgroup$
          – mathlearning
          Jan 23 at 21:04


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084794%2finequality-with-ax2bxc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter