Jacobian for function with couple of couple
Caclulate the jacobian :
$ f:mathbb{R}^2timesmathbb{R}^2tomathbb{R}^2 \
((x,y),(u,v))to(ux-3xv,yu)
$
and
$g:mathbb{R}^2timesmathbb{R}^2tomathbb{R}\
(U,V)to det(u,v)$
for $f$ I don't how to differantiate for a couple of couple. Can I consider it as map form $R^4$,
differential-equations multivariable-calculus partial-derivative
add a comment |
Caclulate the jacobian :
$ f:mathbb{R}^2timesmathbb{R}^2tomathbb{R}^2 \
((x,y),(u,v))to(ux-3xv,yu)
$
and
$g:mathbb{R}^2timesmathbb{R}^2tomathbb{R}\
(U,V)to det(u,v)$
for $f$ I don't how to differantiate for a couple of couple. Can I consider it as map form $R^4$,
differential-equations multivariable-calculus partial-derivative
add a comment |
Caclulate the jacobian :
$ f:mathbb{R}^2timesmathbb{R}^2tomathbb{R}^2 \
((x,y),(u,v))to(ux-3xv,yu)
$
and
$g:mathbb{R}^2timesmathbb{R}^2tomathbb{R}\
(U,V)to det(u,v)$
for $f$ I don't how to differantiate for a couple of couple. Can I consider it as map form $R^4$,
differential-equations multivariable-calculus partial-derivative
Caclulate the jacobian :
$ f:mathbb{R}^2timesmathbb{R}^2tomathbb{R}^2 \
((x,y),(u,v))to(ux-3xv,yu)
$
and
$g:mathbb{R}^2timesmathbb{R}^2tomathbb{R}\
(U,V)to det(u,v)$
for $f$ I don't how to differantiate for a couple of couple. Can I consider it as map form $R^4$,
differential-equations multivariable-calculus partial-derivative
differential-equations multivariable-calculus partial-derivative
asked Nov 20 '18 at 20:10


Mary Maths
165
165
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In the first one you have $f=(f_1,f_2)$ where $f_1:mathbb{R}^4tomathbb{R}$ is given by
$$f_1(x,y,u,v)=ux-3xv$$
and $f_2:mathbb{R}^4to mathbb{R}$ is given by
$$f_2(x,y,u,v)=yu.$$
Then $$begin{align*}
Df_1(x,y,u,v)&=begin{pmatrix}D_xf_1& D_yf_1 & D_uf_1 & D_vf_1end{pmatrix}=begin{pmatrix}u-3v & 0 & x & -3xend{pmatrix}\
Df_2(x,y,u,v)&=begin{pmatrix}D_xf_2& D_yf_2 & D_uf_2 & D_vf_2end{pmatrix}=begin{pmatrix}0 & u & y & 0end{pmatrix}
end{align*}$$
So $$Df(x,y,u,v)=begin{pmatrix}u-3v & 0 & x & -3x\0 & u & y & 0 end{pmatrix}$$
For the second one, denote $u=(u_1,u_2)$ and $v=(v_1,v_2)$. Then
$$g(u,v)=detbegin{pmatrix}u_1 & v_1 \ u_2 & v_2end{pmatrix}=u_1v_2-u_2v_1$$
so that $$Dg(u,v)=Dg(u_1,u_2,v_1,v_2)=begin{pmatrix}D_{u_1}g & D_{u_2}g & D_{v_1}g& D_{v_2}gend{pmatrix}=begin{pmatrix}v_2 & -v_1 & -u_2 & u_1end{pmatrix}$$
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006824%2fjacobian-for-function-with-couple-of-couple%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In the first one you have $f=(f_1,f_2)$ where $f_1:mathbb{R}^4tomathbb{R}$ is given by
$$f_1(x,y,u,v)=ux-3xv$$
and $f_2:mathbb{R}^4to mathbb{R}$ is given by
$$f_2(x,y,u,v)=yu.$$
Then $$begin{align*}
Df_1(x,y,u,v)&=begin{pmatrix}D_xf_1& D_yf_1 & D_uf_1 & D_vf_1end{pmatrix}=begin{pmatrix}u-3v & 0 & x & -3xend{pmatrix}\
Df_2(x,y,u,v)&=begin{pmatrix}D_xf_2& D_yf_2 & D_uf_2 & D_vf_2end{pmatrix}=begin{pmatrix}0 & u & y & 0end{pmatrix}
end{align*}$$
So $$Df(x,y,u,v)=begin{pmatrix}u-3v & 0 & x & -3x\0 & u & y & 0 end{pmatrix}$$
For the second one, denote $u=(u_1,u_2)$ and $v=(v_1,v_2)$. Then
$$g(u,v)=detbegin{pmatrix}u_1 & v_1 \ u_2 & v_2end{pmatrix}=u_1v_2-u_2v_1$$
so that $$Dg(u,v)=Dg(u_1,u_2,v_1,v_2)=begin{pmatrix}D_{u_1}g & D_{u_2}g & D_{v_1}g& D_{v_2}gend{pmatrix}=begin{pmatrix}v_2 & -v_1 & -u_2 & u_1end{pmatrix}$$
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
add a comment |
In the first one you have $f=(f_1,f_2)$ where $f_1:mathbb{R}^4tomathbb{R}$ is given by
$$f_1(x,y,u,v)=ux-3xv$$
and $f_2:mathbb{R}^4to mathbb{R}$ is given by
$$f_2(x,y,u,v)=yu.$$
Then $$begin{align*}
Df_1(x,y,u,v)&=begin{pmatrix}D_xf_1& D_yf_1 & D_uf_1 & D_vf_1end{pmatrix}=begin{pmatrix}u-3v & 0 & x & -3xend{pmatrix}\
Df_2(x,y,u,v)&=begin{pmatrix}D_xf_2& D_yf_2 & D_uf_2 & D_vf_2end{pmatrix}=begin{pmatrix}0 & u & y & 0end{pmatrix}
end{align*}$$
So $$Df(x,y,u,v)=begin{pmatrix}u-3v & 0 & x & -3x\0 & u & y & 0 end{pmatrix}$$
For the second one, denote $u=(u_1,u_2)$ and $v=(v_1,v_2)$. Then
$$g(u,v)=detbegin{pmatrix}u_1 & v_1 \ u_2 & v_2end{pmatrix}=u_1v_2-u_2v_1$$
so that $$Dg(u,v)=Dg(u_1,u_2,v_1,v_2)=begin{pmatrix}D_{u_1}g & D_{u_2}g & D_{v_1}g& D_{v_2}gend{pmatrix}=begin{pmatrix}v_2 & -v_1 & -u_2 & u_1end{pmatrix}$$
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
add a comment |
In the first one you have $f=(f_1,f_2)$ where $f_1:mathbb{R}^4tomathbb{R}$ is given by
$$f_1(x,y,u,v)=ux-3xv$$
and $f_2:mathbb{R}^4to mathbb{R}$ is given by
$$f_2(x,y,u,v)=yu.$$
Then $$begin{align*}
Df_1(x,y,u,v)&=begin{pmatrix}D_xf_1& D_yf_1 & D_uf_1 & D_vf_1end{pmatrix}=begin{pmatrix}u-3v & 0 & x & -3xend{pmatrix}\
Df_2(x,y,u,v)&=begin{pmatrix}D_xf_2& D_yf_2 & D_uf_2 & D_vf_2end{pmatrix}=begin{pmatrix}0 & u & y & 0end{pmatrix}
end{align*}$$
So $$Df(x,y,u,v)=begin{pmatrix}u-3v & 0 & x & -3x\0 & u & y & 0 end{pmatrix}$$
For the second one, denote $u=(u_1,u_2)$ and $v=(v_1,v_2)$. Then
$$g(u,v)=detbegin{pmatrix}u_1 & v_1 \ u_2 & v_2end{pmatrix}=u_1v_2-u_2v_1$$
so that $$Dg(u,v)=Dg(u_1,u_2,v_1,v_2)=begin{pmatrix}D_{u_1}g & D_{u_2}g & D_{v_1}g& D_{v_2}gend{pmatrix}=begin{pmatrix}v_2 & -v_1 & -u_2 & u_1end{pmatrix}$$
In the first one you have $f=(f_1,f_2)$ where $f_1:mathbb{R}^4tomathbb{R}$ is given by
$$f_1(x,y,u,v)=ux-3xv$$
and $f_2:mathbb{R}^4to mathbb{R}$ is given by
$$f_2(x,y,u,v)=yu.$$
Then $$begin{align*}
Df_1(x,y,u,v)&=begin{pmatrix}D_xf_1& D_yf_1 & D_uf_1 & D_vf_1end{pmatrix}=begin{pmatrix}u-3v & 0 & x & -3xend{pmatrix}\
Df_2(x,y,u,v)&=begin{pmatrix}D_xf_2& D_yf_2 & D_uf_2 & D_vf_2end{pmatrix}=begin{pmatrix}0 & u & y & 0end{pmatrix}
end{align*}$$
So $$Df(x,y,u,v)=begin{pmatrix}u-3v & 0 & x & -3x\0 & u & y & 0 end{pmatrix}$$
For the second one, denote $u=(u_1,u_2)$ and $v=(v_1,v_2)$. Then
$$g(u,v)=detbegin{pmatrix}u_1 & v_1 \ u_2 & v_2end{pmatrix}=u_1v_2-u_2v_1$$
so that $$Dg(u,v)=Dg(u_1,u_2,v_1,v_2)=begin{pmatrix}D_{u_1}g & D_{u_2}g & D_{v_1}g& D_{v_2}gend{pmatrix}=begin{pmatrix}v_2 & -v_1 & -u_2 & u_1end{pmatrix}$$
answered Nov 20 '18 at 20:54
smcc
4,297517
4,297517
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
add a comment |
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
For $ f $ why do you consider it as $f(x,y,u,v)$ anf not$f((x,y),(u,v))$
– Mary Maths
Nov 20 '18 at 21:07
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
See here: math.stackexchange.com/questions/338319/…
– smcc
Nov 20 '18 at 22:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006824%2fjacobian-for-function-with-couple-of-couple%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown