Length of an Astroid
$begingroup$
I am having trouble with this question:
Calculate the length of the astroid of $x^{frac23}+y^{frac23}=1$. s = ?
I approached it by doing the following:
- setting $x^{frac23}=1$ because then I can find $x=sqrt{1}=1$
- Then I set $$s = 4int_0^1 sqrt{1 + left(frac{dy}{dx}right)^2}dx$$
- Then I did implicit differentiation to get
$$frac23 x^{-frac13} + frac23 y^{-frac13}left(frac{dy}{dx}right) = 0,\
frac{dy}{dx} = -left(frac{y}{x}right)^{frac13}.$$
I stopped there...
I appreciate the help. Thank you!
calculus
$endgroup$
add a comment |
$begingroup$
I am having trouble with this question:
Calculate the length of the astroid of $x^{frac23}+y^{frac23}=1$. s = ?
I approached it by doing the following:
- setting $x^{frac23}=1$ because then I can find $x=sqrt{1}=1$
- Then I set $$s = 4int_0^1 sqrt{1 + left(frac{dy}{dx}right)^2}dx$$
- Then I did implicit differentiation to get
$$frac23 x^{-frac13} + frac23 y^{-frac13}left(frac{dy}{dx}right) = 0,\
frac{dy}{dx} = -left(frac{y}{x}right)^{frac13}.$$
I stopped there...
I appreciate the help. Thank you!
calculus
$endgroup$
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14
add a comment |
$begingroup$
I am having trouble with this question:
Calculate the length of the astroid of $x^{frac23}+y^{frac23}=1$. s = ?
I approached it by doing the following:
- setting $x^{frac23}=1$ because then I can find $x=sqrt{1}=1$
- Then I set $$s = 4int_0^1 sqrt{1 + left(frac{dy}{dx}right)^2}dx$$
- Then I did implicit differentiation to get
$$frac23 x^{-frac13} + frac23 y^{-frac13}left(frac{dy}{dx}right) = 0,\
frac{dy}{dx} = -left(frac{y}{x}right)^{frac13}.$$
I stopped there...
I appreciate the help. Thank you!
calculus
$endgroup$
I am having trouble with this question:
Calculate the length of the astroid of $x^{frac23}+y^{frac23}=1$. s = ?
I approached it by doing the following:
- setting $x^{frac23}=1$ because then I can find $x=sqrt{1}=1$
- Then I set $$s = 4int_0^1 sqrt{1 + left(frac{dy}{dx}right)^2}dx$$
- Then I did implicit differentiation to get
$$frac23 x^{-frac13} + frac23 y^{-frac13}left(frac{dy}{dx}right) = 0,\
frac{dy}{dx} = -left(frac{y}{x}right)^{frac13}.$$
I stopped there...
I appreciate the help. Thank you!
calculus
calculus
edited Apr 12 '14 at 22:42
user84413
22.9k11848
22.9k11848
asked Apr 12 '14 at 21:48
Vanessa VitielloVanessa Vitiello
116110
116110
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14
add a comment |
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$ds^2=dx^2+dy^2$$
$$ds=sqrt{dx^2+dy^2}=sqrt{1+left(frac{dy}{dx}right)^2}dx$$
$$s=int sqrt{1+left(frac{dy}{dx}right)^2}dx$$
You had the right approach, but the problem was with the implicit differentiation. Since you have $y$ in there, it becomes a problem when integrating.
Instead, isolate $y$ from the original and take the derivative of that:
$$x^{frac23}+y^{frac23}=1$$
$$y^{frac23}=1-x^{frac23}$$
$$y=left(1-x^{frac23}right)^frac32$$
Now when you find $frac{dy}{dx}$, it will only be in terms of $x$. So take the derivative of that:
$$frac{dy}{dx}=frac32 left(1-x^{frac23}right)^frac12 left(-frac23x^{-frac13}right)$$
Get rid of the fractions:
$$frac{dy}{dx}=left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)$$
Now plug it in:
$$s=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)^2}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right) left(x^{-frac23}right)right)}dx=4int_0^1 sqrt{1+left(x^{-frac23}-1right)}dx=4int_0^1 sqrt{x^{-frac23}}dx=4int_0^1 x^{-frac13}dx$$
So easy to integrate now!
$$s=4int_0^1 x^{-frac13}dx=4left(frac32x^frac23Biggr|_0^1right)=4left(frac32right)=therefore 6$$
$endgroup$
add a comment |
$begingroup$
A potentially easier way to do this is to parametrize the astroid by taking advantage of the trig identity $cos^2(theta)+sin^2(theta) = 1$.
Take $x = cos^3(t)$ and $y = sin^3(t)$ where $0leq t leq 2pi$.
By symmetry, we can simply find the arclength of $1/4$th the astroid and multiply by $4$ at the end. The bounds on our integration will be $0 leq t leq pi/2$.
Now simply use the formula for arclength:
$$int_0^{pi/2} sqrt{left( frac{dx}{dt}right)^2 + left( frac{dy}{dt} right)^2} dt$$
$endgroup$
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
add a comment |
$begingroup$
You can also continue using your formula for s.
$$s=4int_0^1sqrt{1+left(frac{dy}{dx}right)^2}dx$$
When you fill in $frac{dy}{dx} = -frac{y^frac{1}{3}}{x^frac{1}{3}}$ in $s$, you get
$$s=4int_0^1 sqrt{1+left(frac{y^frac{1}{3}}{x^frac{1}{3}}right)^2}dx$$
$$s=4int_0^1 sqrt{frac{x^frac{2}{3}+y^frac{2}{3}}{x^frac{2}{3}}}dx$$
$$s=4int_0^1 frac{1}{x^frac{1}{3}}sqrt{x^frac{2}{3}+{y^frac{2}{3}}}dx$$
But the original formula says that $x^frac{2}{3}+y^frac{2}{3}=1$, so
$$s=4int_0^1 frac{1}{x^frac{1}{3}}dx=4int_0^1 x^frac{-1}{3}dx=4left(frac{3}{2}right)=6$$
$endgroup$
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f751163%2flength-of-an-astroid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$ds^2=dx^2+dy^2$$
$$ds=sqrt{dx^2+dy^2}=sqrt{1+left(frac{dy}{dx}right)^2}dx$$
$$s=int sqrt{1+left(frac{dy}{dx}right)^2}dx$$
You had the right approach, but the problem was with the implicit differentiation. Since you have $y$ in there, it becomes a problem when integrating.
Instead, isolate $y$ from the original and take the derivative of that:
$$x^{frac23}+y^{frac23}=1$$
$$y^{frac23}=1-x^{frac23}$$
$$y=left(1-x^{frac23}right)^frac32$$
Now when you find $frac{dy}{dx}$, it will only be in terms of $x$. So take the derivative of that:
$$frac{dy}{dx}=frac32 left(1-x^{frac23}right)^frac12 left(-frac23x^{-frac13}right)$$
Get rid of the fractions:
$$frac{dy}{dx}=left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)$$
Now plug it in:
$$s=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)^2}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right) left(x^{-frac23}right)right)}dx=4int_0^1 sqrt{1+left(x^{-frac23}-1right)}dx=4int_0^1 sqrt{x^{-frac23}}dx=4int_0^1 x^{-frac13}dx$$
So easy to integrate now!
$$s=4int_0^1 x^{-frac13}dx=4left(frac32x^frac23Biggr|_0^1right)=4left(frac32right)=therefore 6$$
$endgroup$
add a comment |
$begingroup$
$$ds^2=dx^2+dy^2$$
$$ds=sqrt{dx^2+dy^2}=sqrt{1+left(frac{dy}{dx}right)^2}dx$$
$$s=int sqrt{1+left(frac{dy}{dx}right)^2}dx$$
You had the right approach, but the problem was with the implicit differentiation. Since you have $y$ in there, it becomes a problem when integrating.
Instead, isolate $y$ from the original and take the derivative of that:
$$x^{frac23}+y^{frac23}=1$$
$$y^{frac23}=1-x^{frac23}$$
$$y=left(1-x^{frac23}right)^frac32$$
Now when you find $frac{dy}{dx}$, it will only be in terms of $x$. So take the derivative of that:
$$frac{dy}{dx}=frac32 left(1-x^{frac23}right)^frac12 left(-frac23x^{-frac13}right)$$
Get rid of the fractions:
$$frac{dy}{dx}=left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)$$
Now plug it in:
$$s=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)^2}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right) left(x^{-frac23}right)right)}dx=4int_0^1 sqrt{1+left(x^{-frac23}-1right)}dx=4int_0^1 sqrt{x^{-frac23}}dx=4int_0^1 x^{-frac13}dx$$
So easy to integrate now!
$$s=4int_0^1 x^{-frac13}dx=4left(frac32x^frac23Biggr|_0^1right)=4left(frac32right)=therefore 6$$
$endgroup$
add a comment |
$begingroup$
$$ds^2=dx^2+dy^2$$
$$ds=sqrt{dx^2+dy^2}=sqrt{1+left(frac{dy}{dx}right)^2}dx$$
$$s=int sqrt{1+left(frac{dy}{dx}right)^2}dx$$
You had the right approach, but the problem was with the implicit differentiation. Since you have $y$ in there, it becomes a problem when integrating.
Instead, isolate $y$ from the original and take the derivative of that:
$$x^{frac23}+y^{frac23}=1$$
$$y^{frac23}=1-x^{frac23}$$
$$y=left(1-x^{frac23}right)^frac32$$
Now when you find $frac{dy}{dx}$, it will only be in terms of $x$. So take the derivative of that:
$$frac{dy}{dx}=frac32 left(1-x^{frac23}right)^frac12 left(-frac23x^{-frac13}right)$$
Get rid of the fractions:
$$frac{dy}{dx}=left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)$$
Now plug it in:
$$s=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)^2}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right) left(x^{-frac23}right)right)}dx=4int_0^1 sqrt{1+left(x^{-frac23}-1right)}dx=4int_0^1 sqrt{x^{-frac23}}dx=4int_0^1 x^{-frac13}dx$$
So easy to integrate now!
$$s=4int_0^1 x^{-frac13}dx=4left(frac32x^frac23Biggr|_0^1right)=4left(frac32right)=therefore 6$$
$endgroup$
$$ds^2=dx^2+dy^2$$
$$ds=sqrt{dx^2+dy^2}=sqrt{1+left(frac{dy}{dx}right)^2}dx$$
$$s=int sqrt{1+left(frac{dy}{dx}right)^2}dx$$
You had the right approach, but the problem was with the implicit differentiation. Since you have $y$ in there, it becomes a problem when integrating.
Instead, isolate $y$ from the original and take the derivative of that:
$$x^{frac23}+y^{frac23}=1$$
$$y^{frac23}=1-x^{frac23}$$
$$y=left(1-x^{frac23}right)^frac32$$
Now when you find $frac{dy}{dx}$, it will only be in terms of $x$. So take the derivative of that:
$$frac{dy}{dx}=frac32 left(1-x^{frac23}right)^frac12 left(-frac23x^{-frac13}right)$$
Get rid of the fractions:
$$frac{dy}{dx}=left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)$$
Now plug it in:
$$s=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)^2}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)left(1-x^{frac23}right)^frac12 left(-x^{-frac13}right)right)}dx=4int_0^1 sqrt{1+left(left(1-x^{frac23}right) left(x^{-frac23}right)right)}dx=4int_0^1 sqrt{1+left(x^{-frac23}-1right)}dx=4int_0^1 sqrt{x^{-frac23}}dx=4int_0^1 x^{-frac13}dx$$
So easy to integrate now!
$$s=4int_0^1 x^{-frac13}dx=4left(frac32x^frac23Biggr|_0^1right)=4left(frac32right)=therefore 6$$
answered Apr 12 '14 at 22:25


ShaharShahar
3,1742917
3,1742917
add a comment |
add a comment |
$begingroup$
A potentially easier way to do this is to parametrize the astroid by taking advantage of the trig identity $cos^2(theta)+sin^2(theta) = 1$.
Take $x = cos^3(t)$ and $y = sin^3(t)$ where $0leq t leq 2pi$.
By symmetry, we can simply find the arclength of $1/4$th the astroid and multiply by $4$ at the end. The bounds on our integration will be $0 leq t leq pi/2$.
Now simply use the formula for arclength:
$$int_0^{pi/2} sqrt{left( frac{dx}{dt}right)^2 + left( frac{dy}{dt} right)^2} dt$$
$endgroup$
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
add a comment |
$begingroup$
A potentially easier way to do this is to parametrize the astroid by taking advantage of the trig identity $cos^2(theta)+sin^2(theta) = 1$.
Take $x = cos^3(t)$ and $y = sin^3(t)$ where $0leq t leq 2pi$.
By symmetry, we can simply find the arclength of $1/4$th the astroid and multiply by $4$ at the end. The bounds on our integration will be $0 leq t leq pi/2$.
Now simply use the formula for arclength:
$$int_0^{pi/2} sqrt{left( frac{dx}{dt}right)^2 + left( frac{dy}{dt} right)^2} dt$$
$endgroup$
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
add a comment |
$begingroup$
A potentially easier way to do this is to parametrize the astroid by taking advantage of the trig identity $cos^2(theta)+sin^2(theta) = 1$.
Take $x = cos^3(t)$ and $y = sin^3(t)$ where $0leq t leq 2pi$.
By symmetry, we can simply find the arclength of $1/4$th the astroid and multiply by $4$ at the end. The bounds on our integration will be $0 leq t leq pi/2$.
Now simply use the formula for arclength:
$$int_0^{pi/2} sqrt{left( frac{dx}{dt}right)^2 + left( frac{dy}{dt} right)^2} dt$$
$endgroup$
A potentially easier way to do this is to parametrize the astroid by taking advantage of the trig identity $cos^2(theta)+sin^2(theta) = 1$.
Take $x = cos^3(t)$ and $y = sin^3(t)$ where $0leq t leq 2pi$.
By symmetry, we can simply find the arclength of $1/4$th the astroid and multiply by $4$ at the end. The bounds on our integration will be $0 leq t leq pi/2$.
Now simply use the formula for arclength:
$$int_0^{pi/2} sqrt{left( frac{dx}{dt}right)^2 + left( frac{dy}{dt} right)^2} dt$$
edited Aug 9 '16 at 23:42
answered Apr 12 '14 at 22:38


Kaj HansenKaj Hansen
27.5k43779
27.5k43779
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
add a comment |
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
$begingroup$
Thank you very much! This was very helpful!
$endgroup$
– Vanessa Vitiello
May 8 '14 at 22:40
add a comment |
$begingroup$
You can also continue using your formula for s.
$$s=4int_0^1sqrt{1+left(frac{dy}{dx}right)^2}dx$$
When you fill in $frac{dy}{dx} = -frac{y^frac{1}{3}}{x^frac{1}{3}}$ in $s$, you get
$$s=4int_0^1 sqrt{1+left(frac{y^frac{1}{3}}{x^frac{1}{3}}right)^2}dx$$
$$s=4int_0^1 sqrt{frac{x^frac{2}{3}+y^frac{2}{3}}{x^frac{2}{3}}}dx$$
$$s=4int_0^1 frac{1}{x^frac{1}{3}}sqrt{x^frac{2}{3}+{y^frac{2}{3}}}dx$$
But the original formula says that $x^frac{2}{3}+y^frac{2}{3}=1$, so
$$s=4int_0^1 frac{1}{x^frac{1}{3}}dx=4int_0^1 x^frac{-1}{3}dx=4left(frac{3}{2}right)=6$$
$endgroup$
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
add a comment |
$begingroup$
You can also continue using your formula for s.
$$s=4int_0^1sqrt{1+left(frac{dy}{dx}right)^2}dx$$
When you fill in $frac{dy}{dx} = -frac{y^frac{1}{3}}{x^frac{1}{3}}$ in $s$, you get
$$s=4int_0^1 sqrt{1+left(frac{y^frac{1}{3}}{x^frac{1}{3}}right)^2}dx$$
$$s=4int_0^1 sqrt{frac{x^frac{2}{3}+y^frac{2}{3}}{x^frac{2}{3}}}dx$$
$$s=4int_0^1 frac{1}{x^frac{1}{3}}sqrt{x^frac{2}{3}+{y^frac{2}{3}}}dx$$
But the original formula says that $x^frac{2}{3}+y^frac{2}{3}=1$, so
$$s=4int_0^1 frac{1}{x^frac{1}{3}}dx=4int_0^1 x^frac{-1}{3}dx=4left(frac{3}{2}right)=6$$
$endgroup$
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
add a comment |
$begingroup$
You can also continue using your formula for s.
$$s=4int_0^1sqrt{1+left(frac{dy}{dx}right)^2}dx$$
When you fill in $frac{dy}{dx} = -frac{y^frac{1}{3}}{x^frac{1}{3}}$ in $s$, you get
$$s=4int_0^1 sqrt{1+left(frac{y^frac{1}{3}}{x^frac{1}{3}}right)^2}dx$$
$$s=4int_0^1 sqrt{frac{x^frac{2}{3}+y^frac{2}{3}}{x^frac{2}{3}}}dx$$
$$s=4int_0^1 frac{1}{x^frac{1}{3}}sqrt{x^frac{2}{3}+{y^frac{2}{3}}}dx$$
But the original formula says that $x^frac{2}{3}+y^frac{2}{3}=1$, so
$$s=4int_0^1 frac{1}{x^frac{1}{3}}dx=4int_0^1 x^frac{-1}{3}dx=4left(frac{3}{2}right)=6$$
$endgroup$
You can also continue using your formula for s.
$$s=4int_0^1sqrt{1+left(frac{dy}{dx}right)^2}dx$$
When you fill in $frac{dy}{dx} = -frac{y^frac{1}{3}}{x^frac{1}{3}}$ in $s$, you get
$$s=4int_0^1 sqrt{1+left(frac{y^frac{1}{3}}{x^frac{1}{3}}right)^2}dx$$
$$s=4int_0^1 sqrt{frac{x^frac{2}{3}+y^frac{2}{3}}{x^frac{2}{3}}}dx$$
$$s=4int_0^1 frac{1}{x^frac{1}{3}}sqrt{x^frac{2}{3}+{y^frac{2}{3}}}dx$$
But the original formula says that $x^frac{2}{3}+y^frac{2}{3}=1$, so
$$s=4int_0^1 frac{1}{x^frac{1}{3}}dx=4int_0^1 x^frac{-1}{3}dx=4left(frac{3}{2}right)=6$$
answered Jan 24 at 15:48
kilian vounckxkilian vounckx
1
1
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
add a comment |
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
$begingroup$
Great answer and welcome to Mathematics Stack Exchange! A quick tour will enhance your experience.
$endgroup$
– dantopa
Jan 24 at 15:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f751163%2flength-of-an-astroid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you write $y$ as a function of $x$, i.e., $y=f(x)$?
$endgroup$
– David H
Apr 12 '14 at 22:14