$ mu $ premeasure and continousness - proof verification












1












$begingroup$


Let be $ mu $ a content on a Ring $R$



I want to prove following
$$ (a) leftrightarrow (b) rightarrow (c) leftrightarrow (d) $$
with



a) $ mu $ is a premeasure



b) $mu $ is continous "from below " , means $ A_n uparrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



c)$mu $ is continous "from above " , means $ A_n downarrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



d) $ mu $ is $ emptyset $- continous, means there is a sequence $ (A_n) in mathbb{R}$ with $ A_n downarrow emptyset $
and $mu (A_n) < infty forall n $ with $ mu (A_n) rightarrow 0 $



__



here my proof:
$ (a) rightarrow (b) $
Let be $ A_n uparrow A $ and define $A_0= emptyset $



Then $B_n= A_n backslash A_{n-1} $ is pairwise disjoint.
Then you can write



$ A_n = cup_{k=1}^n B_k$ and $ A= cup_{k in mathbb{N}} B_k $



so is



$mu (A_n)= mu ( cup_{k=1}^n B_k ) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty} mu (B_k)= mu ( cup_{k=1}^{ infty } B_k) = mu (A) $



$(a) leftarrow (b) $



here the $ sigma $- additivity needs to be show.



So let be $ B_1,...,B_n $ pairwise disjoint and $ A_n = cup_{k=1}^n B_k $



then $ A_n uparrow = cup_{k=1} ^{ infty} B_n $ hold



and you can write



$mu (A_n) = mu ( cup_{k=1}^n B_k) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty } mu (B_n) $



and because of continousness from below it follows that :
$ mu (A_n) rightarrow mu (A) $



$ (c) rightarrow (d) $



Set $ A= emptyset $ then $ A_n downarrow emptyset $ and $ mu (A_n) < infty $
and
$ mu (A_n) rightarrow mu (A) = mu ( emptyset) = 0 $



$ (c) leftarrow (d) $



let be $ mu $ finite.
Then $ A backslash A_n uparrow 0 $ holds and
$ mu (A) - lim_{n rightarrow infty} mu (A_n) = lim_{ n rightarrow infty} mu (A backslash A_n ) = mu ( emptyset)= 0 $



$(b) rightarrow (c) $



Is $ A_n downarrow A $ then $ A_1 backslash A_n uparrow A_1 backslash A $



and $ mu (A) < mu (A_n) < infty $



so
$ mu (A_1)- mu (A_n) = mu (A_1 backslash A_n) rightarrow mu ( A_1 backslash A) = mu (A_1 ) - mu (A) $



Is this proof correct so far? Can I leave it like that or woud you add some adjustments? especially i'm not sure with case b) to c)
Thanks in advance !!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let be $ mu $ a content on a Ring $R$



    I want to prove following
    $$ (a) leftrightarrow (b) rightarrow (c) leftrightarrow (d) $$
    with



    a) $ mu $ is a premeasure



    b) $mu $ is continous "from below " , means $ A_n uparrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



    c)$mu $ is continous "from above " , means $ A_n downarrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



    d) $ mu $ is $ emptyset $- continous, means there is a sequence $ (A_n) in mathbb{R}$ with $ A_n downarrow emptyset $
    and $mu (A_n) < infty forall n $ with $ mu (A_n) rightarrow 0 $



    __



    here my proof:
    $ (a) rightarrow (b) $
    Let be $ A_n uparrow A $ and define $A_0= emptyset $



    Then $B_n= A_n backslash A_{n-1} $ is pairwise disjoint.
    Then you can write



    $ A_n = cup_{k=1}^n B_k$ and $ A= cup_{k in mathbb{N}} B_k $



    so is



    $mu (A_n)= mu ( cup_{k=1}^n B_k ) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty} mu (B_k)= mu ( cup_{k=1}^{ infty } B_k) = mu (A) $



    $(a) leftarrow (b) $



    here the $ sigma $- additivity needs to be show.



    So let be $ B_1,...,B_n $ pairwise disjoint and $ A_n = cup_{k=1}^n B_k $



    then $ A_n uparrow = cup_{k=1} ^{ infty} B_n $ hold



    and you can write



    $mu (A_n) = mu ( cup_{k=1}^n B_k) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty } mu (B_n) $



    and because of continousness from below it follows that :
    $ mu (A_n) rightarrow mu (A) $



    $ (c) rightarrow (d) $



    Set $ A= emptyset $ then $ A_n downarrow emptyset $ and $ mu (A_n) < infty $
    and
    $ mu (A_n) rightarrow mu (A) = mu ( emptyset) = 0 $



    $ (c) leftarrow (d) $



    let be $ mu $ finite.
    Then $ A backslash A_n uparrow 0 $ holds and
    $ mu (A) - lim_{n rightarrow infty} mu (A_n) = lim_{ n rightarrow infty} mu (A backslash A_n ) = mu ( emptyset)= 0 $



    $(b) rightarrow (c) $



    Is $ A_n downarrow A $ then $ A_1 backslash A_n uparrow A_1 backslash A $



    and $ mu (A) < mu (A_n) < infty $



    so
    $ mu (A_1)- mu (A_n) = mu (A_1 backslash A_n) rightarrow mu ( A_1 backslash A) = mu (A_1 ) - mu (A) $



    Is this proof correct so far? Can I leave it like that or woud you add some adjustments? especially i'm not sure with case b) to c)
    Thanks in advance !!










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let be $ mu $ a content on a Ring $R$



      I want to prove following
      $$ (a) leftrightarrow (b) rightarrow (c) leftrightarrow (d) $$
      with



      a) $ mu $ is a premeasure



      b) $mu $ is continous "from below " , means $ A_n uparrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



      c)$mu $ is continous "from above " , means $ A_n downarrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



      d) $ mu $ is $ emptyset $- continous, means there is a sequence $ (A_n) in mathbb{R}$ with $ A_n downarrow emptyset $
      and $mu (A_n) < infty forall n $ with $ mu (A_n) rightarrow 0 $



      __



      here my proof:
      $ (a) rightarrow (b) $
      Let be $ A_n uparrow A $ and define $A_0= emptyset $



      Then $B_n= A_n backslash A_{n-1} $ is pairwise disjoint.
      Then you can write



      $ A_n = cup_{k=1}^n B_k$ and $ A= cup_{k in mathbb{N}} B_k $



      so is



      $mu (A_n)= mu ( cup_{k=1}^n B_k ) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty} mu (B_k)= mu ( cup_{k=1}^{ infty } B_k) = mu (A) $



      $(a) leftarrow (b) $



      here the $ sigma $- additivity needs to be show.



      So let be $ B_1,...,B_n $ pairwise disjoint and $ A_n = cup_{k=1}^n B_k $



      then $ A_n uparrow = cup_{k=1} ^{ infty} B_n $ hold



      and you can write



      $mu (A_n) = mu ( cup_{k=1}^n B_k) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty } mu (B_n) $



      and because of continousness from below it follows that :
      $ mu (A_n) rightarrow mu (A) $



      $ (c) rightarrow (d) $



      Set $ A= emptyset $ then $ A_n downarrow emptyset $ and $ mu (A_n) < infty $
      and
      $ mu (A_n) rightarrow mu (A) = mu ( emptyset) = 0 $



      $ (c) leftarrow (d) $



      let be $ mu $ finite.
      Then $ A backslash A_n uparrow 0 $ holds and
      $ mu (A) - lim_{n rightarrow infty} mu (A_n) = lim_{ n rightarrow infty} mu (A backslash A_n ) = mu ( emptyset)= 0 $



      $(b) rightarrow (c) $



      Is $ A_n downarrow A $ then $ A_1 backslash A_n uparrow A_1 backslash A $



      and $ mu (A) < mu (A_n) < infty $



      so
      $ mu (A_1)- mu (A_n) = mu (A_1 backslash A_n) rightarrow mu ( A_1 backslash A) = mu (A_1 ) - mu (A) $



      Is this proof correct so far? Can I leave it like that or woud you add some adjustments? especially i'm not sure with case b) to c)
      Thanks in advance !!










      share|cite|improve this question











      $endgroup$




      Let be $ mu $ a content on a Ring $R$



      I want to prove following
      $$ (a) leftrightarrow (b) rightarrow (c) leftrightarrow (d) $$
      with



      a) $ mu $ is a premeasure



      b) $mu $ is continous "from below " , means $ A_n uparrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



      c)$mu $ is continous "from above " , means $ A_n downarrow A, A in R$ and $mu (A_n) rightarrow mu (A) $



      d) $ mu $ is $ emptyset $- continous, means there is a sequence $ (A_n) in mathbb{R}$ with $ A_n downarrow emptyset $
      and $mu (A_n) < infty forall n $ with $ mu (A_n) rightarrow 0 $



      __



      here my proof:
      $ (a) rightarrow (b) $
      Let be $ A_n uparrow A $ and define $A_0= emptyset $



      Then $B_n= A_n backslash A_{n-1} $ is pairwise disjoint.
      Then you can write



      $ A_n = cup_{k=1}^n B_k$ and $ A= cup_{k in mathbb{N}} B_k $



      so is



      $mu (A_n)= mu ( cup_{k=1}^n B_k ) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty} mu (B_k)= mu ( cup_{k=1}^{ infty } B_k) = mu (A) $



      $(a) leftarrow (b) $



      here the $ sigma $- additivity needs to be show.



      So let be $ B_1,...,B_n $ pairwise disjoint and $ A_n = cup_{k=1}^n B_k $



      then $ A_n uparrow = cup_{k=1} ^{ infty} B_n $ hold



      and you can write



      $mu (A_n) = mu ( cup_{k=1}^n B_k) = sum_{k=1}^n mu (B_k) rightarrow sum_{k=1}^{ infty } mu (B_n) $



      and because of continousness from below it follows that :
      $ mu (A_n) rightarrow mu (A) $



      $ (c) rightarrow (d) $



      Set $ A= emptyset $ then $ A_n downarrow emptyset $ and $ mu (A_n) < infty $
      and
      $ mu (A_n) rightarrow mu (A) = mu ( emptyset) = 0 $



      $ (c) leftarrow (d) $



      let be $ mu $ finite.
      Then $ A backslash A_n uparrow 0 $ holds and
      $ mu (A) - lim_{n rightarrow infty} mu (A_n) = lim_{ n rightarrow infty} mu (A backslash A_n ) = mu ( emptyset)= 0 $



      $(b) rightarrow (c) $



      Is $ A_n downarrow A $ then $ A_1 backslash A_n uparrow A_1 backslash A $



      and $ mu (A) < mu (A_n) < infty $



      so
      $ mu (A_1)- mu (A_n) = mu (A_1 backslash A_n) rightarrow mu ( A_1 backslash A) = mu (A_1 ) - mu (A) $



      Is this proof correct so far? Can I leave it like that or woud you add some adjustments? especially i'm not sure with case b) to c)
      Thanks in advance !!







      measure-theory proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 16:43







      constant94

















      asked Jan 23 at 15:03









      constant94constant94

      6310




      6310






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084582%2fmu-premeasure-and-continousness-proof-verification%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084582%2fmu-premeasure-and-continousness-proof-verification%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith