Prove that $sigma_n - e$ is decreasing faster than $e-S_n$ given specific $sigma_n$ and $S_n$.
$begingroup$
Let $sigma_n$ and $S_n$ be defined as:
$$
sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
S_n = 1 + sum_{k=1}^nfrac{1}{k!}
$$
Show that $sigma_n - e$ is decreasing faster than $e-S_n$.
I may use anything before the definition of a derivative.
Based on the question we want to eventually show that:
$$
sigma_n - e le e - S_n
$$
Lets adjust $sigma_n$. Define $a_n$:
$$
a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
$$
This may be expanded by partial fractions:
$$
begin{align}
a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
&= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
&= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
&= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
end{align}
$$
Now going back to the inequality:
$$
sigma_n - e le e - S_n iff \
sigma_n + S_n le 2e iff \
3 - a_n + S_n le 2e
$$
Replacing the terms with actual sums one may obtain:
$$
begin{align*}
3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
&= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
&= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
&= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
end{align*}
$$
Which eventually results into:
$$
frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
$$
Now based on this question:
$$
e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
While I wanted to show:
$$
frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
$$
Or summarizing:
$$
frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
Which seems to be the case. Now I got stuck. How do I proceed from here?
Description of the steps:
$(1.1)$ - replace $sigma_n$ and $S_n$ with sums
$(1.2)$ - cancel $-1+1$
$(1.3)$ - change indexing in the sum
$(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.
$(1.5)$ - add the sums.
$(1.6)$ - factor out $2$. Factor out $1over (n+1)!$
$(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction
calculus sequences-and-series proof-verification summation
$endgroup$
add a comment |
$begingroup$
Let $sigma_n$ and $S_n$ be defined as:
$$
sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
S_n = 1 + sum_{k=1}^nfrac{1}{k!}
$$
Show that $sigma_n - e$ is decreasing faster than $e-S_n$.
I may use anything before the definition of a derivative.
Based on the question we want to eventually show that:
$$
sigma_n - e le e - S_n
$$
Lets adjust $sigma_n$. Define $a_n$:
$$
a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
$$
This may be expanded by partial fractions:
$$
begin{align}
a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
&= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
&= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
&= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
end{align}
$$
Now going back to the inequality:
$$
sigma_n - e le e - S_n iff \
sigma_n + S_n le 2e iff \
3 - a_n + S_n le 2e
$$
Replacing the terms with actual sums one may obtain:
$$
begin{align*}
3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
&= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
&= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
&= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
end{align*}
$$
Which eventually results into:
$$
frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
$$
Now based on this question:
$$
e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
While I wanted to show:
$$
frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
$$
Or summarizing:
$$
frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
Which seems to be the case. Now I got stuck. How do I proceed from here?
Description of the steps:
$(1.1)$ - replace $sigma_n$ and $S_n$ with sums
$(1.2)$ - cancel $-1+1$
$(1.3)$ - change indexing in the sum
$(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.
$(1.5)$ - add the sums.
$(1.6)$ - factor out $2$. Factor out $1over (n+1)!$
$(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction
calculus sequences-and-series proof-verification summation
$endgroup$
add a comment |
$begingroup$
Let $sigma_n$ and $S_n$ be defined as:
$$
sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
S_n = 1 + sum_{k=1}^nfrac{1}{k!}
$$
Show that $sigma_n - e$ is decreasing faster than $e-S_n$.
I may use anything before the definition of a derivative.
Based on the question we want to eventually show that:
$$
sigma_n - e le e - S_n
$$
Lets adjust $sigma_n$. Define $a_n$:
$$
a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
$$
This may be expanded by partial fractions:
$$
begin{align}
a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
&= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
&= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
&= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
end{align}
$$
Now going back to the inequality:
$$
sigma_n - e le e - S_n iff \
sigma_n + S_n le 2e iff \
3 - a_n + S_n le 2e
$$
Replacing the terms with actual sums one may obtain:
$$
begin{align*}
3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
&= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
&= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
&= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
end{align*}
$$
Which eventually results into:
$$
frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
$$
Now based on this question:
$$
e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
While I wanted to show:
$$
frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
$$
Or summarizing:
$$
frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
Which seems to be the case. Now I got stuck. How do I proceed from here?
Description of the steps:
$(1.1)$ - replace $sigma_n$ and $S_n$ with sums
$(1.2)$ - cancel $-1+1$
$(1.3)$ - change indexing in the sum
$(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.
$(1.5)$ - add the sums.
$(1.6)$ - factor out $2$. Factor out $1over (n+1)!$
$(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction
calculus sequences-and-series proof-verification summation
$endgroup$
Let $sigma_n$ and $S_n$ be defined as:
$$
sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
S_n = 1 + sum_{k=1}^nfrac{1}{k!}
$$
Show that $sigma_n - e$ is decreasing faster than $e-S_n$.
I may use anything before the definition of a derivative.
Based on the question we want to eventually show that:
$$
sigma_n - e le e - S_n
$$
Lets adjust $sigma_n$. Define $a_n$:
$$
a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
$$
This may be expanded by partial fractions:
$$
begin{align}
a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
&= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
&= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
&= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
end{align}
$$
Now going back to the inequality:
$$
sigma_n - e le e - S_n iff \
sigma_n + S_n le 2e iff \
3 - a_n + S_n le 2e
$$
Replacing the terms with actual sums one may obtain:
$$
begin{align*}
3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
&= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
&= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
&= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
end{align*}
$$
Which eventually results into:
$$
frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
$$
Now based on this question:
$$
e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
While I wanted to show:
$$
frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
$$
Or summarizing:
$$
frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
$$
Which seems to be the case. Now I got stuck. How do I proceed from here?
Description of the steps:
$(1.1)$ - replace $sigma_n$ and $S_n$ with sums
$(1.2)$ - cancel $-1+1$
$(1.3)$ - change indexing in the sum
$(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.
$(1.5)$ - add the sums.
$(1.6)$ - factor out $2$. Factor out $1over (n+1)!$
$(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction
calculus sequences-and-series proof-verification summation
calculus sequences-and-series proof-verification summation
edited Jan 24 at 22:08
roman
asked Jan 24 at 15:39
romanroman
2,36421224
2,36421224
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
begin{aligned}\
e-sum_{k=0}^{n} frac{1}{k!}
&= sum_{k=n+1}^{infty} {1over k!}\
&geq frac1{(n+1)!}+frac1{(n+2)!}\
&geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
&=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
&=frac{n+2}{2(n+1)(n+1)!}
end{aligned}
Seems to me that you did most of the work in your original question.
$endgroup$
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086005%2fprove-that-sigma-n-e-is-decreasing-faster-than-e-s-n-given-specific-sig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
begin{aligned}\
e-sum_{k=0}^{n} frac{1}{k!}
&= sum_{k=n+1}^{infty} {1over k!}\
&geq frac1{(n+1)!}+frac1{(n+2)!}\
&geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
&=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
&=frac{n+2}{2(n+1)(n+1)!}
end{aligned}
Seems to me that you did most of the work in your original question.
$endgroup$
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
add a comment |
$begingroup$
Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
begin{aligned}\
e-sum_{k=0}^{n} frac{1}{k!}
&= sum_{k=n+1}^{infty} {1over k!}\
&geq frac1{(n+1)!}+frac1{(n+2)!}\
&geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
&=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
&=frac{n+2}{2(n+1)(n+1)!}
end{aligned}
Seems to me that you did most of the work in your original question.
$endgroup$
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
add a comment |
$begingroup$
Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
begin{aligned}\
e-sum_{k=0}^{n} frac{1}{k!}
&= sum_{k=n+1}^{infty} {1over k!}\
&geq frac1{(n+1)!}+frac1{(n+2)!}\
&geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
&=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
&=frac{n+2}{2(n+1)(n+1)!}
end{aligned}
Seems to me that you did most of the work in your original question.
$endgroup$
Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
begin{aligned}\
e-sum_{k=0}^{n} frac{1}{k!}
&= sum_{k=n+1}^{infty} {1over k!}\
&geq frac1{(n+1)!}+frac1{(n+2)!}\
&geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
&=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
&=frac{n+2}{2(n+1)(n+1)!}
end{aligned}
Seems to me that you did most of the work in your original question.
edited Jan 24 at 23:07
answered Jan 24 at 23:02


Matt A PeltoMatt A Pelto
2,602621
2,602621
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
add a comment |
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
1
1
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
$begingroup$
Wonderful. Thank you!
$endgroup$
– roman
Jan 24 at 23:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086005%2fprove-that-sigma-n-e-is-decreasing-faster-than-e-s-n-given-specific-sig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown