Prove that $sigma_n - e$ is decreasing faster than $e-S_n$ given specific $sigma_n$ and $S_n$.












3












$begingroup$



Let $sigma_n$ and $S_n$ be defined as:
$$
sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
S_n = 1 + sum_{k=1}^nfrac{1}{k!}
$$

Show that $sigma_n - e$ is decreasing faster than $e-S_n$.




I may use anything before the definition of a derivative.
Based on the question we want to eventually show that:
$$
sigma_n - e le e - S_n
$$

Lets adjust $sigma_n$. Define $a_n$:
$$
a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
$$

This may be expanded by partial fractions:
$$
begin{align}
a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
&= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
&= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
&= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
&= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
end{align}
$$



Now going back to the inequality:
$$
sigma_n - e le e - S_n iff \
sigma_n + S_n le 2e iff \
3 - a_n + S_n le 2e
$$



Replacing the terms with actual sums one may obtain:
$$
begin{align*}
3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
&= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
&= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
&= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
&= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
end{align*}
$$



Which eventually results into:
$$
frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
$$



Now based on this question:
$$
e - S_n le frac{n+2}{(n+1)(n+1)!}
$$



While I wanted to show:
$$
frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
$$



Or summarizing:
$$
frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
$$



Which seems to be the case. Now I got stuck. How do I proceed from here?



Description of the steps:





  • $(1.1)$ - replace $sigma_n$ and $S_n$ with sums


  • $(1.2)$ - cancel $-1+1$


  • $(1.3)$ - change indexing in the sum


  • $(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.


  • $(1.5)$ - add the sums.


  • $(1.6)$ - factor out $2$. Factor out $1over (n+1)!$


  • $(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction










share|cite|improve this question











$endgroup$

















    3












    $begingroup$



    Let $sigma_n$ and $S_n$ be defined as:
    $$
    sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
    S_n = 1 + sum_{k=1}^nfrac{1}{k!}
    $$

    Show that $sigma_n - e$ is decreasing faster than $e-S_n$.




    I may use anything before the definition of a derivative.
    Based on the question we want to eventually show that:
    $$
    sigma_n - e le e - S_n
    $$

    Lets adjust $sigma_n$. Define $a_n$:
    $$
    a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
    $$

    This may be expanded by partial fractions:
    $$
    begin{align}
    a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
    &= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
    &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
    &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
    &= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
    &= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
    text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
    end{align}
    $$



    Now going back to the inequality:
    $$
    sigma_n - e le e - S_n iff \
    sigma_n + S_n le 2e iff \
    3 - a_n + S_n le 2e
    $$



    Replacing the terms with actual sums one may obtain:
    $$
    begin{align*}
    3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
    &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
    &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
    &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
    &= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
    &= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
    &= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
    end{align*}
    $$



    Which eventually results into:
    $$
    frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
    $$



    Now based on this question:
    $$
    e - S_n le frac{n+2}{(n+1)(n+1)!}
    $$



    While I wanted to show:
    $$
    frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
    frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
    $$



    Or summarizing:
    $$
    frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
    $$



    Which seems to be the case. Now I got stuck. How do I proceed from here?



    Description of the steps:





    • $(1.1)$ - replace $sigma_n$ and $S_n$ with sums


    • $(1.2)$ - cancel $-1+1$


    • $(1.3)$ - change indexing in the sum


    • $(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.


    • $(1.5)$ - add the sums.


    • $(1.6)$ - factor out $2$. Factor out $1over (n+1)!$


    • $(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$



      Let $sigma_n$ and $S_n$ be defined as:
      $$
      sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
      S_n = 1 + sum_{k=1}^nfrac{1}{k!}
      $$

      Show that $sigma_n - e$ is decreasing faster than $e-S_n$.




      I may use anything before the definition of a derivative.
      Based on the question we want to eventually show that:
      $$
      sigma_n - e le e - S_n
      $$

      Lets adjust $sigma_n$. Define $a_n$:
      $$
      a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
      $$

      This may be expanded by partial fractions:
      $$
      begin{align}
      a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
      &= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
      &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
      &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
      &= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
      &= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
      text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
      end{align}
      $$



      Now going back to the inequality:
      $$
      sigma_n - e le e - S_n iff \
      sigma_n + S_n le 2e iff \
      3 - a_n + S_n le 2e
      $$



      Replacing the terms with actual sums one may obtain:
      $$
      begin{align*}
      3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
      &= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
      &= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
      &= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
      end{align*}
      $$



      Which eventually results into:
      $$
      frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
      $$



      Now based on this question:
      $$
      e - S_n le frac{n+2}{(n+1)(n+1)!}
      $$



      While I wanted to show:
      $$
      frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
      frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
      $$



      Or summarizing:
      $$
      frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
      $$



      Which seems to be the case. Now I got stuck. How do I proceed from here?



      Description of the steps:





      • $(1.1)$ - replace $sigma_n$ and $S_n$ with sums


      • $(1.2)$ - cancel $-1+1$


      • $(1.3)$ - change indexing in the sum


      • $(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.


      • $(1.5)$ - add the sums.


      • $(1.6)$ - factor out $2$. Factor out $1over (n+1)!$


      • $(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction










      share|cite|improve this question











      $endgroup$





      Let $sigma_n$ and $S_n$ be defined as:
      $$
      sigma_n = 3 - sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
      S_n = 1 + sum_{k=1}^nfrac{1}{k!}
      $$

      Show that $sigma_n - e$ is decreasing faster than $e-S_n$.




      I may use anything before the definition of a derivative.
      Based on the question we want to eventually show that:
      $$
      sigma_n - e le e - S_n
      $$

      Lets adjust $sigma_n$. Define $a_n$:
      $$
      a_n = sum_{k=1}^nfrac{1}{k(k+1)(k+1)!}
      $$

      This may be expanded by partial fractions:
      $$
      begin{align}
      a_n &= sum_{k=1}^nfrac{1}{k(k+1)(k+1)!} \
      &= sum_{k=1}^nfrac{1}{k(k+1)}cdotfrac{1}{(k+1)!} \
      &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1}right)cdotfrac{1}{(k+1)!} \
      &= sum_{k=1}^nleft(frac{1}{k} - frac{1}{k+1} - frac{1}{(k+1)^2}right)cdotfrac{1}{k!} \
      &= sum_{k=1}^n frac{1}{kk!} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} - color{blue}{sum_{k=1}^n frac{1}{(k+1)^2k!}} \
      &= sum_{k=1}^n frac{1}{kk!} - color{blue}{sum_{k=1}^n frac{1}{(k+1)(k+1)!}} - color{red}{sum_{k=1}^n frac{1}{(k+1)k!}} \
      text{(telescoping)} &= 1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}
      end{align}
      $$



      Now going back to the inequality:
      $$
      sigma_n - e le e - S_n iff \
      sigma_n + S_n le 2e iff \
      3 - a_n + S_n le 2e
      $$



      Replacing the terms with actual sums one may obtain:
      $$
      begin{align*}
      3 - a_n + S_n &= 3 - left(1 - frac{1}{(n+1)(n+1)!} - sum_{k=1}^n frac{1}{(k+1)!}right) + 1 + sum_{k=1}^n{1over k!} tag{1.1} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^n frac{1}{(k+1)!} + sum_{k=1}^n{1over k!} tag{1.2} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=2}^{n+1} frac{1}{k!} + sum_{k=1}^n{1over k!} tag{1.3} \
      &= 3 + frac{1}{(n+1)(n+1)!} + sum_{k=1}^{n} frac{1}{k!} - 1 + {1over (n+1)!} + sum_{k=1}^n{1over k!} tag{1.4} \
      &= 2 + frac{1}{(n+1)(n+1)!} + frac{1}{(n+1)!} + 2sum_{k=1}^{n} frac{1}{k!} tag{1.5} \
      &= 2left(1 + frac{1}{2(n+1)!}left({1over n+1} + 1right) + sum_{k=1}^{n} frac{1}{k!}right) tag{1.6} \
      &= 2left(frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!}right) tag{1.7}
      end{align*}
      $$



      Which eventually results into:
      $$
      frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e
      $$



      Now based on this question:
      $$
      e - S_n le frac{n+2}{(n+1)(n+1)!}
      $$



      While I wanted to show:
      $$
      frac{n+2}{color{red}{2}(n+1)(n+1)!} + S_n le e iff \
      frac{n+2}{color{red}{2}(n+1)(n+1)!} le e - S_n
      $$



      Or summarizing:
      $$
      frac{n+2}{2(n+1)(n+1)!} le e - S_n le frac{n+2}{(n+1)(n+1)!}
      $$



      Which seems to be the case. Now I got stuck. How do I proceed from here?



      Description of the steps:





      • $(1.1)$ - replace $sigma_n$ and $S_n$ with sums


      • $(1.2)$ - cancel $-1+1$


      • $(1.3)$ - change indexing in the sum


      • $(1.4)$ - add and subtract $1$ and change the index of the sum. Fetch last term of the sum.


      • $(1.5)$ - add the sums.


      • $(1.6)$ - factor out $2$. Factor out $1over (n+1)!$


      • $(1.7)$ - inject $1$ into the sum and change indexing. Cast brackets to a single fraction







      calculus sequences-and-series proof-verification summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 24 at 22:08







      roman

















      asked Jan 24 at 15:39









      romanroman

      2,36421224




      2,36421224






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
          begin{aligned}\
          e-sum_{k=0}^{n} frac{1}{k!}
          &= sum_{k=n+1}^{infty} {1over k!}\
          &geq frac1{(n+1)!}+frac1{(n+2)!}\
          &geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
          &=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
          &=frac{n+2}{2(n+1)(n+1)!}
          end{aligned}



          Seems to me that you did most of the work in your original question.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Wonderful. Thank you!
            $endgroup$
            – roman
            Jan 24 at 23:10











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086005%2fprove-that-sigma-n-e-is-decreasing-faster-than-e-s-n-given-specific-sig%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
          begin{aligned}\
          e-sum_{k=0}^{n} frac{1}{k!}
          &= sum_{k=n+1}^{infty} {1over k!}\
          &geq frac1{(n+1)!}+frac1{(n+2)!}\
          &geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
          &=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
          &=frac{n+2}{2(n+1)(n+1)!}
          end{aligned}



          Seems to me that you did most of the work in your original question.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Wonderful. Thank you!
            $endgroup$
            – roman
            Jan 24 at 23:10
















          2












          $begingroup$

          Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
          begin{aligned}\
          e-sum_{k=0}^{n} frac{1}{k!}
          &= sum_{k=n+1}^{infty} {1over k!}\
          &geq frac1{(n+1)!}+frac1{(n+2)!}\
          &geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
          &=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
          &=frac{n+2}{2(n+1)(n+1)!}
          end{aligned}



          Seems to me that you did most of the work in your original question.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Wonderful. Thank you!
            $endgroup$
            – roman
            Jan 24 at 23:10














          2












          2








          2





          $begingroup$

          Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
          begin{aligned}\
          e-sum_{k=0}^{n} frac{1}{k!}
          &= sum_{k=n+1}^{infty} {1over k!}\
          &geq frac1{(n+1)!}+frac1{(n+2)!}\
          &geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
          &=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
          &=frac{n+2}{2(n+1)(n+1)!}
          end{aligned}



          Seems to me that you did most of the work in your original question.






          share|cite|improve this answer











          $endgroup$



          Presuming my cursory review of your work leading up to the inequality $frac{(n+2)}{2(n+1)(n+1)!} + sum_{k=0}^{n} frac{1}{k!} le e$ didn't miss an error and assuming $n in mathbb N$, we may proceed as follows:
          begin{aligned}\
          e-sum_{k=0}^{n} frac{1}{k!}
          &= sum_{k=n+1}^{infty} {1over k!}\
          &geq frac1{(n+1)!}+frac1{(n+2)!}\
          &geq frac1{2(n+1)!}+frac1{(2n+2)(n+1)!} && (n+2leq2n+2) \
          &=frac{n+1}{2(n+1)(n+1)!}+frac1{2(n+1)(n+1)!} \
          &=frac{n+2}{2(n+1)(n+1)!}
          end{aligned}



          Seems to me that you did most of the work in your original question.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 24 at 23:07

























          answered Jan 24 at 23:02









          Matt A PeltoMatt A Pelto

          2,602621




          2,602621








          • 1




            $begingroup$
            Wonderful. Thank you!
            $endgroup$
            – roman
            Jan 24 at 23:10














          • 1




            $begingroup$
            Wonderful. Thank you!
            $endgroup$
            – roman
            Jan 24 at 23:10








          1




          1




          $begingroup$
          Wonderful. Thank you!
          $endgroup$
          – roman
          Jan 24 at 23:10




          $begingroup$
          Wonderful. Thank you!
          $endgroup$
          – roman
          Jan 24 at 23:10


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086005%2fprove-that-sigma-n-e-is-decreasing-faster-than-e-s-n-given-specific-sig%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          Npm cannot find a required file even through it is in the searched directory

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith