Proving this vector calculus equation
$begingroup$
Suppose $vec{a}(t)$ is a time dependent vector and $vec{b}$ is a constant vector. I want to show $$frac{d}{dt}left[vec{a} cdot left(frac{d vec{a}}{dt} times vec{b}right)right] = vec{a} cdot left[frac{d^2vec{a}}{dt^2} times vec {b}right].$$
I'm not sure how to go about doing this. The proof need not be rigorous; I'm just confused on which properties to elicit where. Thanks!
multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $vec{a}(t)$ is a time dependent vector and $vec{b}$ is a constant vector. I want to show $$frac{d}{dt}left[vec{a} cdot left(frac{d vec{a}}{dt} times vec{b}right)right] = vec{a} cdot left[frac{d^2vec{a}}{dt^2} times vec {b}right].$$
I'm not sure how to go about doing this. The proof need not be rigorous; I'm just confused on which properties to elicit where. Thanks!
multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $vec{a}(t)$ is a time dependent vector and $vec{b}$ is a constant vector. I want to show $$frac{d}{dt}left[vec{a} cdot left(frac{d vec{a}}{dt} times vec{b}right)right] = vec{a} cdot left[frac{d^2vec{a}}{dt^2} times vec {b}right].$$
I'm not sure how to go about doing this. The proof need not be rigorous; I'm just confused on which properties to elicit where. Thanks!
multivariable-calculus vector-analysis
$endgroup$
Suppose $vec{a}(t)$ is a time dependent vector and $vec{b}$ is a constant vector. I want to show $$frac{d}{dt}left[vec{a} cdot left(frac{d vec{a}}{dt} times vec{b}right)right] = vec{a} cdot left[frac{d^2vec{a}}{dt^2} times vec {b}right].$$
I'm not sure how to go about doing this. The proof need not be rigorous; I'm just confused on which properties to elicit where. Thanks!
multivariable-calculus vector-analysis
multivariable-calculus vector-analysis
edited Jan 19 at 23:57
jordan_glen
1
1
asked Jan 19 at 23:52
appleapple
445
445
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Apply the derivative
$$frac{d}{dt} left[vec{a} cdot left( frac{dvec{a}}{dt} times vec{b}right) right] = underbrace{frac{dvec{a}}{dt} cdot left( frac{dvec{a}}{dt} times vec{b}right)}_{0} + vec{a} cdot left( frac{d^2vec{a}}{dt^2} times vec{b}right)$$
since $vec{a},' times vec{b}$ is orthogonal to $vec{a},'.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079985%2fproving-this-vector-calculus-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Apply the derivative
$$frac{d}{dt} left[vec{a} cdot left( frac{dvec{a}}{dt} times vec{b}right) right] = underbrace{frac{dvec{a}}{dt} cdot left( frac{dvec{a}}{dt} times vec{b}right)}_{0} + vec{a} cdot left( frac{d^2vec{a}}{dt^2} times vec{b}right)$$
since $vec{a},' times vec{b}$ is orthogonal to $vec{a},'.$
$endgroup$
add a comment |
$begingroup$
Apply the derivative
$$frac{d}{dt} left[vec{a} cdot left( frac{dvec{a}}{dt} times vec{b}right) right] = underbrace{frac{dvec{a}}{dt} cdot left( frac{dvec{a}}{dt} times vec{b}right)}_{0} + vec{a} cdot left( frac{d^2vec{a}}{dt^2} times vec{b}right)$$
since $vec{a},' times vec{b}$ is orthogonal to $vec{a},'.$
$endgroup$
add a comment |
$begingroup$
Apply the derivative
$$frac{d}{dt} left[vec{a} cdot left( frac{dvec{a}}{dt} times vec{b}right) right] = underbrace{frac{dvec{a}}{dt} cdot left( frac{dvec{a}}{dt} times vec{b}right)}_{0} + vec{a} cdot left( frac{d^2vec{a}}{dt^2} times vec{b}right)$$
since $vec{a},' times vec{b}$ is orthogonal to $vec{a},'.$
$endgroup$
Apply the derivative
$$frac{d}{dt} left[vec{a} cdot left( frac{dvec{a}}{dt} times vec{b}right) right] = underbrace{frac{dvec{a}}{dt} cdot left( frac{dvec{a}}{dt} times vec{b}right)}_{0} + vec{a} cdot left( frac{d^2vec{a}}{dt^2} times vec{b}right)$$
since $vec{a},' times vec{b}$ is orthogonal to $vec{a},'.$
answered Jan 20 at 0:00
AEngineerAEngineer
1,5441317
1,5441317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079985%2fproving-this-vector-calculus-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown