Vector geometry involving parallel vectors
$begingroup$
I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
$$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$
As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?
vectors
$endgroup$
add a comment |
$begingroup$
I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
$$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$
As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?
vectors
$endgroup$
add a comment |
$begingroup$
I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
$$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$
As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?
vectors
$endgroup$
I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
$$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$
As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?
vectors
vectors
edited Jan 25 at 1:36
Indula
asked Jan 24 at 14:56
IndulaIndula
506
506
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
$$
left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
$$
But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.
$endgroup$
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085950%2fvector-geometry-involving-parallel-vectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
$$
left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
$$
But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.
$endgroup$
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
add a comment |
$begingroup$
Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
$$
left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
$$
But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.
$endgroup$
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
add a comment |
$begingroup$
Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
$$
left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
$$
But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.
$endgroup$
Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
$$
left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
$$
But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.
answered Jan 24 at 16:14
Vasily MitchVasily Mitch
2,6791312
2,6791312
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
add a comment |
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
$endgroup$
– Indula
Jan 25 at 2:15
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Can we reason like that though?
$endgroup$
– Indula
Jan 25 at 2:30
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
$begingroup$
Yes, that is the right reasoning
$endgroup$
– Vasily Mitch
Jan 25 at 14:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085950%2fvector-geometry-involving-parallel-vectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown