Vector geometry involving parallel vectors












1












$begingroup$


I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
$$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$



As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?Snapshot of the text










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
    $$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$



    As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?Snapshot of the text










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
      $$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$



      As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?Snapshot of the text










      share|cite|improve this question











      $endgroup$




      I found this question on vector geometry in an IGCSE text. I got these solutions for the following vectors: $vec {BP}=mathbf a-mathbf b$, $vec {AB}=mathbf b-3mathbf a$, $vec {MB}=frac 12(mathbf b-3mathbf a)$. Then for $vec {MX}$ I got this really long and complicated expression in terms of $mathbf a$, $mathbf b$ and $mathit k$:
      $$vec {MX}=frac 12(mathbf b-3mathbf a)+mathit k(mathbf a-mathbf b)=left(mathit k-frac 32right)mathbf a+left(frac 12-mathit kright)mathbf b$$



      As I understand, if $vec {MX}$ is parallel to $vec {BO}$, $vec {MX}$ would be something times $vec {BO}$. But how do you use that result to find the value of $mathit k$?Snapshot of the text







      vectors






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 25 at 1:36







      Indula

















      asked Jan 24 at 14:56









      IndulaIndula

      506




      506






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
          $$
          left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
          $$



          But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
            $endgroup$
            – Indula
            Jan 25 at 2:15












          • $begingroup$
            Can we reason like that though?
            $endgroup$
            – Indula
            Jan 25 at 2:30










          • $begingroup$
            Yes, that is the right reasoning
            $endgroup$
            – Vasily Mitch
            Jan 25 at 14:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085950%2fvector-geometry-involving-parallel-vectors%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
          $$
          left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
          $$



          But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
            $endgroup$
            – Indula
            Jan 25 at 2:15












          • $begingroup$
            Can we reason like that though?
            $endgroup$
            – Indula
            Jan 25 at 2:30










          • $begingroup$
            Yes, that is the right reasoning
            $endgroup$
            – Vasily Mitch
            Jan 25 at 14:22
















          0












          $begingroup$

          Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
          $$
          left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
          $$



          But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
            $endgroup$
            – Indula
            Jan 25 at 2:15












          • $begingroup$
            Can we reason like that though?
            $endgroup$
            – Indula
            Jan 25 at 2:30










          • $begingroup$
            Yes, that is the right reasoning
            $endgroup$
            – Vasily Mitch
            Jan 25 at 14:22














          0












          0








          0





          $begingroup$

          Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
          $$
          left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
          $$



          But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.






          share|cite|improve this answer









          $endgroup$



          Two vectors $mathbf u$ and $mathbf v$ are parallel if there is a scalar $c$, so $mathbf u =cmathbf v$. So if $vec{MX}$ is parallel to $vec{OB}$, then there should be $c$:
          $$
          left(k-frac32right)mathbf a+left(frac12-kright)mathbf b=cmathbf b
          $$



          But since $mathbf a$ isn't parallel to $mathbf b$, it can't be true until $k-3/2=0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 24 at 16:14









          Vasily MitchVasily Mitch

          2,6791312




          2,6791312












          • $begingroup$
            So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
            $endgroup$
            – Indula
            Jan 25 at 2:15












          • $begingroup$
            Can we reason like that though?
            $endgroup$
            – Indula
            Jan 25 at 2:30










          • $begingroup$
            Yes, that is the right reasoning
            $endgroup$
            – Vasily Mitch
            Jan 25 at 14:22


















          • $begingroup$
            So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
            $endgroup$
            – Indula
            Jan 25 at 2:15












          • $begingroup$
            Can we reason like that though?
            $endgroup$
            – Indula
            Jan 25 at 2:30










          • $begingroup$
            Yes, that is the right reasoning
            $endgroup$
            – Vasily Mitch
            Jan 25 at 14:22
















          $begingroup$
          So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
          $endgroup$
          – Indula
          Jan 25 at 2:15






          $begingroup$
          So if $vec {MX}$ is parallel to $vec {OB}$, $vec {MX}=mathit cvec {OB}$ where $mathit c$ is a scalar. But $vec {OB}=mathbf b$ and $vec {MX}=left (mathit k-frac 32 right)mathbf a+left(frac 12-mathit kright)mathbf b$. Unless $mathbf a$ is parallel to $mathbf b$, $vec {MX}$ is parallel to $vec {OB}$ iff $mathit k=frac 32$. Therefore it must be that $mathit k=frac 32$ if $vec {MX}$ is parallel to $vec {OB}$. Is that how the reasoning go?
          $endgroup$
          – Indula
          Jan 25 at 2:15














          $begingroup$
          Can we reason like that though?
          $endgroup$
          – Indula
          Jan 25 at 2:30




          $begingroup$
          Can we reason like that though?
          $endgroup$
          – Indula
          Jan 25 at 2:30












          $begingroup$
          Yes, that is the right reasoning
          $endgroup$
          – Vasily Mitch
          Jan 25 at 14:22




          $begingroup$
          Yes, that is the right reasoning
          $endgroup$
          – Vasily Mitch
          Jan 25 at 14:22


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085950%2fvector-geometry-involving-parallel-vectors%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          Npm cannot find a required file even through it is in the searched directory