By creating a reduction formula for $I_n=int_0 ^pi x^n sin x ,dx$ Show that $I_4=pi^4 -12pi^2 + 48$












2












$begingroup$



By creating a reduction formula for
$$I_n=int_0 ^pi x^n sin x ,dx$$ Show that $I_4=pi^4 -12pi^2 + 48$




So by using integration by parts I wrote $I_n$ as $$I_n=int_0 ^pi x^n sin x ,dx = left[-x^ncos x right]_0 ^pi -int_0 ^pi nx^{n-1}times -cos x, dx$$ and after messing about with this I got $$I_n = pi^n +nI_{n-1}$$ However, the answer shows that this is wrong and I don't get the correct answer for $I_4$. The correct answer is $I_n = pi^n -n(n-1)I_{n-2}$. Can someone help explain how you get this reduction formula as I can't seem to get it and why my one doesn't work.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You need to do by-parts again in order to compare the new integral with $I_n.$
    $endgroup$
    – Adrian Keister
    Feb 1 at 21:08










  • $begingroup$
    Can you show me what you mean?
    $endgroup$
    – H.Linkhorn
    Feb 1 at 21:26










  • $begingroup$
    Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
    $endgroup$
    – FDP
    Feb 1 at 21:47


















2












$begingroup$



By creating a reduction formula for
$$I_n=int_0 ^pi x^n sin x ,dx$$ Show that $I_4=pi^4 -12pi^2 + 48$




So by using integration by parts I wrote $I_n$ as $$I_n=int_0 ^pi x^n sin x ,dx = left[-x^ncos x right]_0 ^pi -int_0 ^pi nx^{n-1}times -cos x, dx$$ and after messing about with this I got $$I_n = pi^n +nI_{n-1}$$ However, the answer shows that this is wrong and I don't get the correct answer for $I_4$. The correct answer is $I_n = pi^n -n(n-1)I_{n-2}$. Can someone help explain how you get this reduction formula as I can't seem to get it and why my one doesn't work.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You need to do by-parts again in order to compare the new integral with $I_n.$
    $endgroup$
    – Adrian Keister
    Feb 1 at 21:08










  • $begingroup$
    Can you show me what you mean?
    $endgroup$
    – H.Linkhorn
    Feb 1 at 21:26










  • $begingroup$
    Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
    $endgroup$
    – FDP
    Feb 1 at 21:47
















2












2








2


1



$begingroup$



By creating a reduction formula for
$$I_n=int_0 ^pi x^n sin x ,dx$$ Show that $I_4=pi^4 -12pi^2 + 48$




So by using integration by parts I wrote $I_n$ as $$I_n=int_0 ^pi x^n sin x ,dx = left[-x^ncos x right]_0 ^pi -int_0 ^pi nx^{n-1}times -cos x, dx$$ and after messing about with this I got $$I_n = pi^n +nI_{n-1}$$ However, the answer shows that this is wrong and I don't get the correct answer for $I_4$. The correct answer is $I_n = pi^n -n(n-1)I_{n-2}$. Can someone help explain how you get this reduction formula as I can't seem to get it and why my one doesn't work.










share|cite|improve this question









$endgroup$





By creating a reduction formula for
$$I_n=int_0 ^pi x^n sin x ,dx$$ Show that $I_4=pi^4 -12pi^2 + 48$




So by using integration by parts I wrote $I_n$ as $$I_n=int_0 ^pi x^n sin x ,dx = left[-x^ncos x right]_0 ^pi -int_0 ^pi nx^{n-1}times -cos x, dx$$ and after messing about with this I got $$I_n = pi^n +nI_{n-1}$$ However, the answer shows that this is wrong and I don't get the correct answer for $I_4$. The correct answer is $I_n = pi^n -n(n-1)I_{n-2}$. Can someone help explain how you get this reduction formula as I can't seem to get it and why my one doesn't work.







integration definite-integrals reduction-formula






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 1 at 21:05









H.LinkhornH.Linkhorn

495213




495213








  • 1




    $begingroup$
    You need to do by-parts again in order to compare the new integral with $I_n.$
    $endgroup$
    – Adrian Keister
    Feb 1 at 21:08










  • $begingroup$
    Can you show me what you mean?
    $endgroup$
    – H.Linkhorn
    Feb 1 at 21:26










  • $begingroup$
    Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
    $endgroup$
    – FDP
    Feb 1 at 21:47
















  • 1




    $begingroup$
    You need to do by-parts again in order to compare the new integral with $I_n.$
    $endgroup$
    – Adrian Keister
    Feb 1 at 21:08










  • $begingroup$
    Can you show me what you mean?
    $endgroup$
    – H.Linkhorn
    Feb 1 at 21:26










  • $begingroup$
    Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
    $endgroup$
    – FDP
    Feb 1 at 21:47










1




1




$begingroup$
You need to do by-parts again in order to compare the new integral with $I_n.$
$endgroup$
– Adrian Keister
Feb 1 at 21:08




$begingroup$
You need to do by-parts again in order to compare the new integral with $I_n.$
$endgroup$
– Adrian Keister
Feb 1 at 21:08












$begingroup$
Can you show me what you mean?
$endgroup$
– H.Linkhorn
Feb 1 at 21:26




$begingroup$
Can you show me what you mean?
$endgroup$
– H.Linkhorn
Feb 1 at 21:26












$begingroup$
Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
$endgroup$
– FDP
Feb 1 at 21:47






$begingroup$
Do you know an antiderivative of the function $cos$ is $sin$? Perform again an integration by parts with the integral in your formula. (in the right side of you formula)
$endgroup$
– FDP
Feb 1 at 21:47












3 Answers
3






active

oldest

votes


















1












$begingroup$

Not really different, but all fully formatted and pretty :)
$$S(n)=int_0^pi x^nsin x,mathrm dx$$
IBP: $$mathrm dv=sin x,mathrm dxRightarrow v=-cos x\ u=x^nRightarrow mathrm du=nx^{n-1}mathrm dx$$
Thus
$$S(n)=-x^ncos xbig|_0^pi+nint_0^pi x^{n-1}cos x,mathrm dx$$
$$S(n)=pi^n+nint_0^pi x^{n-1}cos x,mathrm dx$$
IBP: $$mathrm dv=cos x,mathrm dxRightarrow v=sin x\ u=x^{n-1}Rightarrow mathrm du=(n-1)x^{n-2}mathrm dx$$
Thus
$$S(n)=pi^n+nleft[x^{n-1}sin xbig|_{0}^{pi}-(n-1)int_0^pi x^{n-2}sin x,mathrm dxright]$$
$$S(n)=pi^n-n(n-1)S(n-2)$$
QED






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $I_n=pi^n +int_0 ^pi nx^{n-1}cos x, dx ne pi^n + nI_{n-1}$



    As $I$ is an integral with a sine factor and not a cosine factor.



    You need to do integration by parts a second time.



    $nint_0 ^pi nx^{n-1}cos x, dx = n(n-1)sin x|_0^{pi} - n(n-1)int_0^pi x^{n-2}sin x dx$



    $I_n=pi^n - n(n-1)I_{n-2}$



    And $I_0 = 2$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Let $$I_n(a)=int_0^{pi}x^nsin(ax)dx$$
      Then $$begin{align*}I_{n-2}^{''}(a)
      &=frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
      &=int_0^{pi}x^{n-2}left(frac{d^2}{da^2}sin(ax)right)dx\
      &=-int_0^{pi}x^nsin(ax)dx\
      &=-I_n(a)end{align*}$$

      and $$begin{align*}I_n(1)
      &=-lim_{ato 1}frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
      &=-lim_{ato 1}frac{d^2}{da^2}left(frac1{a^{n-1}}int_0^{api}x^{n-2}sin(x)dxright)\
      &=-lim_{ato 1}left(frac{n(n-1)}{a^{n+1}}int_0^{api}x^{n-2}sin(x)dx-2frac{n-1}{a^{n}}pi (api)^{n-2}sin(api)right.\&qquad+left.frac{pi^{n-1}}{a^{n-1}}left((n-2)a^{n-3}sin(api)+a^{n-2}picos(api)right)right)\
      &=-n(n-1)I_{n-2}(1)+pi^nend{align*}$$

      which is what we wanted.






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096730%2fby-creating-a-reduction-formula-for-i-n-int-0-pi-xn-sin-x-dx-show-that%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Not really different, but all fully formatted and pretty :)
        $$S(n)=int_0^pi x^nsin x,mathrm dx$$
        IBP: $$mathrm dv=sin x,mathrm dxRightarrow v=-cos x\ u=x^nRightarrow mathrm du=nx^{n-1}mathrm dx$$
        Thus
        $$S(n)=-x^ncos xbig|_0^pi+nint_0^pi x^{n-1}cos x,mathrm dx$$
        $$S(n)=pi^n+nint_0^pi x^{n-1}cos x,mathrm dx$$
        IBP: $$mathrm dv=cos x,mathrm dxRightarrow v=sin x\ u=x^{n-1}Rightarrow mathrm du=(n-1)x^{n-2}mathrm dx$$
        Thus
        $$S(n)=pi^n+nleft[x^{n-1}sin xbig|_{0}^{pi}-(n-1)int_0^pi x^{n-2}sin x,mathrm dxright]$$
        $$S(n)=pi^n-n(n-1)S(n-2)$$
        QED






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          Not really different, but all fully formatted and pretty :)
          $$S(n)=int_0^pi x^nsin x,mathrm dx$$
          IBP: $$mathrm dv=sin x,mathrm dxRightarrow v=-cos x\ u=x^nRightarrow mathrm du=nx^{n-1}mathrm dx$$
          Thus
          $$S(n)=-x^ncos xbig|_0^pi+nint_0^pi x^{n-1}cos x,mathrm dx$$
          $$S(n)=pi^n+nint_0^pi x^{n-1}cos x,mathrm dx$$
          IBP: $$mathrm dv=cos x,mathrm dxRightarrow v=sin x\ u=x^{n-1}Rightarrow mathrm du=(n-1)x^{n-2}mathrm dx$$
          Thus
          $$S(n)=pi^n+nleft[x^{n-1}sin xbig|_{0}^{pi}-(n-1)int_0^pi x^{n-2}sin x,mathrm dxright]$$
          $$S(n)=pi^n-n(n-1)S(n-2)$$
          QED






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            Not really different, but all fully formatted and pretty :)
            $$S(n)=int_0^pi x^nsin x,mathrm dx$$
            IBP: $$mathrm dv=sin x,mathrm dxRightarrow v=-cos x\ u=x^nRightarrow mathrm du=nx^{n-1}mathrm dx$$
            Thus
            $$S(n)=-x^ncos xbig|_0^pi+nint_0^pi x^{n-1}cos x,mathrm dx$$
            $$S(n)=pi^n+nint_0^pi x^{n-1}cos x,mathrm dx$$
            IBP: $$mathrm dv=cos x,mathrm dxRightarrow v=sin x\ u=x^{n-1}Rightarrow mathrm du=(n-1)x^{n-2}mathrm dx$$
            Thus
            $$S(n)=pi^n+nleft[x^{n-1}sin xbig|_{0}^{pi}-(n-1)int_0^pi x^{n-2}sin x,mathrm dxright]$$
            $$S(n)=pi^n-n(n-1)S(n-2)$$
            QED






            share|cite|improve this answer









            $endgroup$



            Not really different, but all fully formatted and pretty :)
            $$S(n)=int_0^pi x^nsin x,mathrm dx$$
            IBP: $$mathrm dv=sin x,mathrm dxRightarrow v=-cos x\ u=x^nRightarrow mathrm du=nx^{n-1}mathrm dx$$
            Thus
            $$S(n)=-x^ncos xbig|_0^pi+nint_0^pi x^{n-1}cos x,mathrm dx$$
            $$S(n)=pi^n+nint_0^pi x^{n-1}cos x,mathrm dx$$
            IBP: $$mathrm dv=cos x,mathrm dxRightarrow v=sin x\ u=x^{n-1}Rightarrow mathrm du=(n-1)x^{n-2}mathrm dx$$
            Thus
            $$S(n)=pi^n+nleft[x^{n-1}sin xbig|_{0}^{pi}-(n-1)int_0^pi x^{n-2}sin x,mathrm dxright]$$
            $$S(n)=pi^n-n(n-1)S(n-2)$$
            QED







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 2 at 5:28









            clathratusclathratus

            5,1141439




            5,1141439























                2












                $begingroup$

                $I_n=pi^n +int_0 ^pi nx^{n-1}cos x, dx ne pi^n + nI_{n-1}$



                As $I$ is an integral with a sine factor and not a cosine factor.



                You need to do integration by parts a second time.



                $nint_0 ^pi nx^{n-1}cos x, dx = n(n-1)sin x|_0^{pi} - n(n-1)int_0^pi x^{n-2}sin x dx$



                $I_n=pi^n - n(n-1)I_{n-2}$



                And $I_0 = 2$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  $I_n=pi^n +int_0 ^pi nx^{n-1}cos x, dx ne pi^n + nI_{n-1}$



                  As $I$ is an integral with a sine factor and not a cosine factor.



                  You need to do integration by parts a second time.



                  $nint_0 ^pi nx^{n-1}cos x, dx = n(n-1)sin x|_0^{pi} - n(n-1)int_0^pi x^{n-2}sin x dx$



                  $I_n=pi^n - n(n-1)I_{n-2}$



                  And $I_0 = 2$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    $I_n=pi^n +int_0 ^pi nx^{n-1}cos x, dx ne pi^n + nI_{n-1}$



                    As $I$ is an integral with a sine factor and not a cosine factor.



                    You need to do integration by parts a second time.



                    $nint_0 ^pi nx^{n-1}cos x, dx = n(n-1)sin x|_0^{pi} - n(n-1)int_0^pi x^{n-2}sin x dx$



                    $I_n=pi^n - n(n-1)I_{n-2}$



                    And $I_0 = 2$






                    share|cite|improve this answer









                    $endgroup$



                    $I_n=pi^n +int_0 ^pi nx^{n-1}cos x, dx ne pi^n + nI_{n-1}$



                    As $I$ is an integral with a sine factor and not a cosine factor.



                    You need to do integration by parts a second time.



                    $nint_0 ^pi nx^{n-1}cos x, dx = n(n-1)sin x|_0^{pi} - n(n-1)int_0^pi x^{n-2}sin x dx$



                    $I_n=pi^n - n(n-1)I_{n-2}$



                    And $I_0 = 2$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 1 at 22:07









                    Doug MDoug M

                    45.4k31954




                    45.4k31954























                        1












                        $begingroup$

                        Let $$I_n(a)=int_0^{pi}x^nsin(ax)dx$$
                        Then $$begin{align*}I_{n-2}^{''}(a)
                        &=frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                        &=int_0^{pi}x^{n-2}left(frac{d^2}{da^2}sin(ax)right)dx\
                        &=-int_0^{pi}x^nsin(ax)dx\
                        &=-I_n(a)end{align*}$$

                        and $$begin{align*}I_n(1)
                        &=-lim_{ato 1}frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                        &=-lim_{ato 1}frac{d^2}{da^2}left(frac1{a^{n-1}}int_0^{api}x^{n-2}sin(x)dxright)\
                        &=-lim_{ato 1}left(frac{n(n-1)}{a^{n+1}}int_0^{api}x^{n-2}sin(x)dx-2frac{n-1}{a^{n}}pi (api)^{n-2}sin(api)right.\&qquad+left.frac{pi^{n-1}}{a^{n-1}}left((n-2)a^{n-3}sin(api)+a^{n-2}picos(api)right)right)\
                        &=-n(n-1)I_{n-2}(1)+pi^nend{align*}$$

                        which is what we wanted.






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Let $$I_n(a)=int_0^{pi}x^nsin(ax)dx$$
                          Then $$begin{align*}I_{n-2}^{''}(a)
                          &=frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                          &=int_0^{pi}x^{n-2}left(frac{d^2}{da^2}sin(ax)right)dx\
                          &=-int_0^{pi}x^nsin(ax)dx\
                          &=-I_n(a)end{align*}$$

                          and $$begin{align*}I_n(1)
                          &=-lim_{ato 1}frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                          &=-lim_{ato 1}frac{d^2}{da^2}left(frac1{a^{n-1}}int_0^{api}x^{n-2}sin(x)dxright)\
                          &=-lim_{ato 1}left(frac{n(n-1)}{a^{n+1}}int_0^{api}x^{n-2}sin(x)dx-2frac{n-1}{a^{n}}pi (api)^{n-2}sin(api)right.\&qquad+left.frac{pi^{n-1}}{a^{n-1}}left((n-2)a^{n-3}sin(api)+a^{n-2}picos(api)right)right)\
                          &=-n(n-1)I_{n-2}(1)+pi^nend{align*}$$

                          which is what we wanted.






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Let $$I_n(a)=int_0^{pi}x^nsin(ax)dx$$
                            Then $$begin{align*}I_{n-2}^{''}(a)
                            &=frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                            &=int_0^{pi}x^{n-2}left(frac{d^2}{da^2}sin(ax)right)dx\
                            &=-int_0^{pi}x^nsin(ax)dx\
                            &=-I_n(a)end{align*}$$

                            and $$begin{align*}I_n(1)
                            &=-lim_{ato 1}frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                            &=-lim_{ato 1}frac{d^2}{da^2}left(frac1{a^{n-1}}int_0^{api}x^{n-2}sin(x)dxright)\
                            &=-lim_{ato 1}left(frac{n(n-1)}{a^{n+1}}int_0^{api}x^{n-2}sin(x)dx-2frac{n-1}{a^{n}}pi (api)^{n-2}sin(api)right.\&qquad+left.frac{pi^{n-1}}{a^{n-1}}left((n-2)a^{n-3}sin(api)+a^{n-2}picos(api)right)right)\
                            &=-n(n-1)I_{n-2}(1)+pi^nend{align*}$$

                            which is what we wanted.






                            share|cite|improve this answer









                            $endgroup$



                            Let $$I_n(a)=int_0^{pi}x^nsin(ax)dx$$
                            Then $$begin{align*}I_{n-2}^{''}(a)
                            &=frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                            &=int_0^{pi}x^{n-2}left(frac{d^2}{da^2}sin(ax)right)dx\
                            &=-int_0^{pi}x^nsin(ax)dx\
                            &=-I_n(a)end{align*}$$

                            and $$begin{align*}I_n(1)
                            &=-lim_{ato 1}frac{d^2}{da^2}int_0^{pi}x^{n-2}sin(ax)dx\
                            &=-lim_{ato 1}frac{d^2}{da^2}left(frac1{a^{n-1}}int_0^{api}x^{n-2}sin(x)dxright)\
                            &=-lim_{ato 1}left(frac{n(n-1)}{a^{n+1}}int_0^{api}x^{n-2}sin(x)dx-2frac{n-1}{a^{n}}pi (api)^{n-2}sin(api)right.\&qquad+left.frac{pi^{n-1}}{a^{n-1}}left((n-2)a^{n-3}sin(api)+a^{n-2}picos(api)right)right)\
                            &=-n(n-1)I_{n-2}(1)+pi^nend{align*}$$

                            which is what we wanted.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 1 at 22:35









                            Edward H.Edward H.

                            1689




                            1689






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096730%2fby-creating-a-reduction-formula-for-i-n-int-0-pi-xn-sin-x-dx-show-that%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                Npm cannot find a required file even through it is in the searched directory

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith