If $f(x) >0$ for all $x$, then $lim_{xto a} f(x) ge 0$












2












$begingroup$


I met a problem like this:



Suppose $f(x) > 0$ for all $x$ , and also that $lim_{xto a} f(x)$ exists.



a) Show that $lim_{xto a} f(x) ge 0$.



b) Give an example where $lim_{xto a} f(x) = 0$.



I am not sure how to solve it.. in fact I have no idea.
Could anyone give me a hint?
Thanks!!!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean the original function to be $f(x)ge 0$?
    $endgroup$
    – Adam Hrankowski
    Oct 18 '15 at 5:53










  • $begingroup$
    @AdamHrankowski It wouldn't affect the conclusion.
    $endgroup$
    – BrianO
    Oct 18 '15 at 5:55










  • $begingroup$
    Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
    $endgroup$
    – littleO
    Oct 18 '15 at 5:55










  • $begingroup$
    The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 5:56






  • 2




    $begingroup$
    $ge$ would make b) trivial, so it probably does mean $>$.
    $endgroup$
    – Ben Millwood
    Oct 18 '15 at 5:56
















2












$begingroup$


I met a problem like this:



Suppose $f(x) > 0$ for all $x$ , and also that $lim_{xto a} f(x)$ exists.



a) Show that $lim_{xto a} f(x) ge 0$.



b) Give an example where $lim_{xto a} f(x) = 0$.



I am not sure how to solve it.. in fact I have no idea.
Could anyone give me a hint?
Thanks!!!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean the original function to be $f(x)ge 0$?
    $endgroup$
    – Adam Hrankowski
    Oct 18 '15 at 5:53










  • $begingroup$
    @AdamHrankowski It wouldn't affect the conclusion.
    $endgroup$
    – BrianO
    Oct 18 '15 at 5:55










  • $begingroup$
    Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
    $endgroup$
    – littleO
    Oct 18 '15 at 5:55










  • $begingroup$
    The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 5:56






  • 2




    $begingroup$
    $ge$ would make b) trivial, so it probably does mean $>$.
    $endgroup$
    – Ben Millwood
    Oct 18 '15 at 5:56














2












2








2


1



$begingroup$


I met a problem like this:



Suppose $f(x) > 0$ for all $x$ , and also that $lim_{xto a} f(x)$ exists.



a) Show that $lim_{xto a} f(x) ge 0$.



b) Give an example where $lim_{xto a} f(x) = 0$.



I am not sure how to solve it.. in fact I have no idea.
Could anyone give me a hint?
Thanks!!!










share|cite|improve this question











$endgroup$




I met a problem like this:



Suppose $f(x) > 0$ for all $x$ , and also that $lim_{xto a} f(x)$ exists.



a) Show that $lim_{xto a} f(x) ge 0$.



b) Give an example where $lim_{xto a} f(x) = 0$.



I am not sure how to solve it.. in fact I have no idea.
Could anyone give me a hint?
Thanks!!!







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 18 '15 at 5:57







user99914

















asked Oct 18 '15 at 5:51









Kristian von RiechstoffenKristian von Riechstoffen

142




142












  • $begingroup$
    Do you mean the original function to be $f(x)ge 0$?
    $endgroup$
    – Adam Hrankowski
    Oct 18 '15 at 5:53










  • $begingroup$
    @AdamHrankowski It wouldn't affect the conclusion.
    $endgroup$
    – BrianO
    Oct 18 '15 at 5:55










  • $begingroup$
    Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
    $endgroup$
    – littleO
    Oct 18 '15 at 5:55










  • $begingroup$
    The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 5:56






  • 2




    $begingroup$
    $ge$ would make b) trivial, so it probably does mean $>$.
    $endgroup$
    – Ben Millwood
    Oct 18 '15 at 5:56


















  • $begingroup$
    Do you mean the original function to be $f(x)ge 0$?
    $endgroup$
    – Adam Hrankowski
    Oct 18 '15 at 5:53










  • $begingroup$
    @AdamHrankowski It wouldn't affect the conclusion.
    $endgroup$
    – BrianO
    Oct 18 '15 at 5:55










  • $begingroup$
    Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
    $endgroup$
    – littleO
    Oct 18 '15 at 5:55










  • $begingroup$
    The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 5:56






  • 2




    $begingroup$
    $ge$ would make b) trivial, so it probably does mean $>$.
    $endgroup$
    – Ben Millwood
    Oct 18 '15 at 5:56
















$begingroup$
Do you mean the original function to be $f(x)ge 0$?
$endgroup$
– Adam Hrankowski
Oct 18 '15 at 5:53




$begingroup$
Do you mean the original function to be $f(x)ge 0$?
$endgroup$
– Adam Hrankowski
Oct 18 '15 at 5:53












$begingroup$
@AdamHrankowski It wouldn't affect the conclusion.
$endgroup$
– BrianO
Oct 18 '15 at 5:55




$begingroup$
@AdamHrankowski It wouldn't affect the conclusion.
$endgroup$
– BrianO
Oct 18 '15 at 5:55












$begingroup$
Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
$endgroup$
– littleO
Oct 18 '15 at 5:55




$begingroup$
Suppose the limit is $ L <0$. If I give you $epsilon = |L|/2$, can you give me $delta$?
$endgroup$
– littleO
Oct 18 '15 at 5:55












$begingroup$
The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
$endgroup$
– Kristian von Riechstoffen
Oct 18 '15 at 5:56




$begingroup$
The question is about the original function, f(x) is always greater than 0 for all x. also, lim x-a f(x) exists, say lim x→a f(x) = L. We want to prove that L is ≥ 0
$endgroup$
– Kristian von Riechstoffen
Oct 18 '15 at 5:56




2




2




$begingroup$
$ge$ would make b) trivial, so it probably does mean $>$.
$endgroup$
– Ben Millwood
Oct 18 '15 at 5:56




$begingroup$
$ge$ would make b) trivial, so it probably does mean $>$.
$endgroup$
– Ben Millwood
Oct 18 '15 at 5:56










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $L$ be the limit, you wish to show: $L geq 0$. You could prove this directly, but most "students" would choose the indirect proof. So assume $L < 0$.Thus choose $epsilon = dfrac{-L}{4} > 0$, then there is a $delta > 0$ such that if $0 < |x-a| < delta$, then $|f(x) - L| < dfrac{-L}{4} Rightarrow f(x) - L leq |f(x)-L| < dfrac{-L}{4} Rightarrow f(x) < L-dfrac{L}{4}= dfrac{3L}{4} < 0$, contradiction. Thus $L geq 0$. An example of such a function is $f(x) = e^{-dfrac{1}{x^2}}, x neq 0$,and $1, x = 0$ has $displaystyle lim_{x to 0} f(x)= 0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much, ! think that's a great answer!
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 17:06












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1485459%2fif-fx-0-for-all-x-then-lim-x-to-a-fx-ge-0%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let $L$ be the limit, you wish to show: $L geq 0$. You could prove this directly, but most "students" would choose the indirect proof. So assume $L < 0$.Thus choose $epsilon = dfrac{-L}{4} > 0$, then there is a $delta > 0$ such that if $0 < |x-a| < delta$, then $|f(x) - L| < dfrac{-L}{4} Rightarrow f(x) - L leq |f(x)-L| < dfrac{-L}{4} Rightarrow f(x) < L-dfrac{L}{4}= dfrac{3L}{4} < 0$, contradiction. Thus $L geq 0$. An example of such a function is $f(x) = e^{-dfrac{1}{x^2}}, x neq 0$,and $1, x = 0$ has $displaystyle lim_{x to 0} f(x)= 0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much, ! think that's a great answer!
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 17:06
















0












$begingroup$

Let $L$ be the limit, you wish to show: $L geq 0$. You could prove this directly, but most "students" would choose the indirect proof. So assume $L < 0$.Thus choose $epsilon = dfrac{-L}{4} > 0$, then there is a $delta > 0$ such that if $0 < |x-a| < delta$, then $|f(x) - L| < dfrac{-L}{4} Rightarrow f(x) - L leq |f(x)-L| < dfrac{-L}{4} Rightarrow f(x) < L-dfrac{L}{4}= dfrac{3L}{4} < 0$, contradiction. Thus $L geq 0$. An example of such a function is $f(x) = e^{-dfrac{1}{x^2}}, x neq 0$,and $1, x = 0$ has $displaystyle lim_{x to 0} f(x)= 0$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much, ! think that's a great answer!
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 17:06














0












0








0





$begingroup$

Let $L$ be the limit, you wish to show: $L geq 0$. You could prove this directly, but most "students" would choose the indirect proof. So assume $L < 0$.Thus choose $epsilon = dfrac{-L}{4} > 0$, then there is a $delta > 0$ such that if $0 < |x-a| < delta$, then $|f(x) - L| < dfrac{-L}{4} Rightarrow f(x) - L leq |f(x)-L| < dfrac{-L}{4} Rightarrow f(x) < L-dfrac{L}{4}= dfrac{3L}{4} < 0$, contradiction. Thus $L geq 0$. An example of such a function is $f(x) = e^{-dfrac{1}{x^2}}, x neq 0$,and $1, x = 0$ has $displaystyle lim_{x to 0} f(x)= 0$






share|cite|improve this answer









$endgroup$



Let $L$ be the limit, you wish to show: $L geq 0$. You could prove this directly, but most "students" would choose the indirect proof. So assume $L < 0$.Thus choose $epsilon = dfrac{-L}{4} > 0$, then there is a $delta > 0$ such that if $0 < |x-a| < delta$, then $|f(x) - L| < dfrac{-L}{4} Rightarrow f(x) - L leq |f(x)-L| < dfrac{-L}{4} Rightarrow f(x) < L-dfrac{L}{4}= dfrac{3L}{4} < 0$, contradiction. Thus $L geq 0$. An example of such a function is $f(x) = e^{-dfrac{1}{x^2}}, x neq 0$,and $1, x = 0$ has $displaystyle lim_{x to 0} f(x)= 0$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Oct 18 '15 at 6:43









DeepSeaDeepSea

71.5k54488




71.5k54488












  • $begingroup$
    Thank you so much, ! think that's a great answer!
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 17:06


















  • $begingroup$
    Thank you so much, ! think that's a great answer!
    $endgroup$
    – Kristian von Riechstoffen
    Oct 18 '15 at 17:06
















$begingroup$
Thank you so much, ! think that's a great answer!
$endgroup$
– Kristian von Riechstoffen
Oct 18 '15 at 17:06




$begingroup$
Thank you so much, ! think that's a great answer!
$endgroup$
– Kristian von Riechstoffen
Oct 18 '15 at 17:06


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1485459%2fif-fx-0-for-all-x-then-lim-x-to-a-fx-ge-0%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith