Integral identity involving Bernoulli polynomials
$begingroup$
I found the following identity on Wikipedia, and I am having a difficult time proving it.
For $m,ninBbb N$,
$$I(m,n):=int_0^1B_n(x)B_m(x)mathrm{d}x=(-1)^{n-1}frac{m!n!}{(m+n)!}b_{n+m}$$
Where $B_n(x)$ is the $n$-th Bernoulli polynomial, and $b_n=B_n(0)$ is the $n$-th Bernoulli number. Notably, when one uses $x!=Gamma(x+1)$ on the RHS and then uses the Beta function, we arrive at
$$I(m,n)=(-1)^{n-1}b_{n+m}int_0^1t^n(1-t)^mmathrm{d}t$$
Here's what I've tried.
Because $B_n(x)$ satisfies
$$B_n'(x)=nB_{n-1}(x)$$
We can integrate by parts with $mathrm{d}v=B_n(x)mathrm{d}x$:
$$I(m,n)=frac1{n+1}B_{n+1}(x)B_m(x)bigg|_0^1-frac m{n+1}int_0^1B_{n+1}(x)B_{m-1}(x)mathrm{d}x$$
$$I(m,n)=frac1{n+1}bigg(B_{n+1}(1)B_m(1)-b_{n+1}b_mbigg)-frac{m}{n+1}I(m-1,n+1)$$
Which is a start, but I don't know how to proceed. I would think that the integral should be easy given the fact that Bernoulli polynomials have so many identities, yet I can't seem to find the right one to use. Could you either point me in the right direction, or show me a complete proof? Thanks.
integration combinatorics number-theory polynomials bernoulli-polynomials
$endgroup$
add a comment |
$begingroup$
I found the following identity on Wikipedia, and I am having a difficult time proving it.
For $m,ninBbb N$,
$$I(m,n):=int_0^1B_n(x)B_m(x)mathrm{d}x=(-1)^{n-1}frac{m!n!}{(m+n)!}b_{n+m}$$
Where $B_n(x)$ is the $n$-th Bernoulli polynomial, and $b_n=B_n(0)$ is the $n$-th Bernoulli number. Notably, when one uses $x!=Gamma(x+1)$ on the RHS and then uses the Beta function, we arrive at
$$I(m,n)=(-1)^{n-1}b_{n+m}int_0^1t^n(1-t)^mmathrm{d}t$$
Here's what I've tried.
Because $B_n(x)$ satisfies
$$B_n'(x)=nB_{n-1}(x)$$
We can integrate by parts with $mathrm{d}v=B_n(x)mathrm{d}x$:
$$I(m,n)=frac1{n+1}B_{n+1}(x)B_m(x)bigg|_0^1-frac m{n+1}int_0^1B_{n+1}(x)B_{m-1}(x)mathrm{d}x$$
$$I(m,n)=frac1{n+1}bigg(B_{n+1}(1)B_m(1)-b_{n+1}b_mbigg)-frac{m}{n+1}I(m-1,n+1)$$
Which is a start, but I don't know how to proceed. I would think that the integral should be easy given the fact that Bernoulli polynomials have so many identities, yet I can't seem to find the right one to use. Could you either point me in the right direction, or show me a complete proof? Thanks.
integration combinatorics number-theory polynomials bernoulli-polynomials
$endgroup$
add a comment |
$begingroup$
I found the following identity on Wikipedia, and I am having a difficult time proving it.
For $m,ninBbb N$,
$$I(m,n):=int_0^1B_n(x)B_m(x)mathrm{d}x=(-1)^{n-1}frac{m!n!}{(m+n)!}b_{n+m}$$
Where $B_n(x)$ is the $n$-th Bernoulli polynomial, and $b_n=B_n(0)$ is the $n$-th Bernoulli number. Notably, when one uses $x!=Gamma(x+1)$ on the RHS and then uses the Beta function, we arrive at
$$I(m,n)=(-1)^{n-1}b_{n+m}int_0^1t^n(1-t)^mmathrm{d}t$$
Here's what I've tried.
Because $B_n(x)$ satisfies
$$B_n'(x)=nB_{n-1}(x)$$
We can integrate by parts with $mathrm{d}v=B_n(x)mathrm{d}x$:
$$I(m,n)=frac1{n+1}B_{n+1}(x)B_m(x)bigg|_0^1-frac m{n+1}int_0^1B_{n+1}(x)B_{m-1}(x)mathrm{d}x$$
$$I(m,n)=frac1{n+1}bigg(B_{n+1}(1)B_m(1)-b_{n+1}b_mbigg)-frac{m}{n+1}I(m-1,n+1)$$
Which is a start, but I don't know how to proceed. I would think that the integral should be easy given the fact that Bernoulli polynomials have so many identities, yet I can't seem to find the right one to use. Could you either point me in the right direction, or show me a complete proof? Thanks.
integration combinatorics number-theory polynomials bernoulli-polynomials
$endgroup$
I found the following identity on Wikipedia, and I am having a difficult time proving it.
For $m,ninBbb N$,
$$I(m,n):=int_0^1B_n(x)B_m(x)mathrm{d}x=(-1)^{n-1}frac{m!n!}{(m+n)!}b_{n+m}$$
Where $B_n(x)$ is the $n$-th Bernoulli polynomial, and $b_n=B_n(0)$ is the $n$-th Bernoulli number. Notably, when one uses $x!=Gamma(x+1)$ on the RHS and then uses the Beta function, we arrive at
$$I(m,n)=(-1)^{n-1}b_{n+m}int_0^1t^n(1-t)^mmathrm{d}t$$
Here's what I've tried.
Because $B_n(x)$ satisfies
$$B_n'(x)=nB_{n-1}(x)$$
We can integrate by parts with $mathrm{d}v=B_n(x)mathrm{d}x$:
$$I(m,n)=frac1{n+1}B_{n+1}(x)B_m(x)bigg|_0^1-frac m{n+1}int_0^1B_{n+1}(x)B_{m-1}(x)mathrm{d}x$$
$$I(m,n)=frac1{n+1}bigg(B_{n+1}(1)B_m(1)-b_{n+1}b_mbigg)-frac{m}{n+1}I(m-1,n+1)$$
Which is a start, but I don't know how to proceed. I would think that the integral should be easy given the fact that Bernoulli polynomials have so many identities, yet I can't seem to find the right one to use. Could you either point me in the right direction, or show me a complete proof? Thanks.
integration combinatorics number-theory polynomials bernoulli-polynomials
integration combinatorics number-theory polynomials bernoulli-polynomials
edited Jan 29 at 21:28
clathratus
asked Nov 28 '18 at 22:54


clathratusclathratus
5,0591439
5,0591439
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here are some properties,
for integer $k>1$, $B_k(0)=B_k(1)$,
$B_1(1)=-B_1(0)=dfrac 12, B_0(x)equiv1$,
for $kinBbb N$, $I(0,k)=displaystyleint_0^1 B_k(x)~mathrm dx=0$.
Therefore,
for integers $r, s>1$,
$$big[B_r(x)B_s(x)big]_0^1= 0,$$for integer $r>1$,
$$big[B_r(1)B_1(1)big]_0^1=frac12(B_r(1)+B_r(0))=B_r(0),$$
Thus, when $m,nne1$, apply IBP,
begin{align*}
I(m,n)&=-frac m{n+1} I(m-1,n+1)\
&=left(-frac m{n+1}right)left(-frac {m-1}{n+2}right)cdotsleft(-frac {2}{n+m-1}right)color{blue}{I(1,n+m-1)}\
&=frac{(-1)^{m-1}m!}{(n+1)(n+2)cdots(m+n-1)}color{blue}{frac1{n+m}Big{underbrace{big[B_{m+n}(x)B_1(x)big]_0^1}_{=B_{m+n}(0)}-underbrace{I(0,n+m)}_{=0}Big}}\
&=frac{(-1)^{m-1}m!n!}{(m+n)!}B_{m+n}(0).\
end{align*}
The case $m=n=1$ is followed by direct computations.
$endgroup$
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017872%2fintegral-identity-involving-bernoulli-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here are some properties,
for integer $k>1$, $B_k(0)=B_k(1)$,
$B_1(1)=-B_1(0)=dfrac 12, B_0(x)equiv1$,
for $kinBbb N$, $I(0,k)=displaystyleint_0^1 B_k(x)~mathrm dx=0$.
Therefore,
for integers $r, s>1$,
$$big[B_r(x)B_s(x)big]_0^1= 0,$$for integer $r>1$,
$$big[B_r(1)B_1(1)big]_0^1=frac12(B_r(1)+B_r(0))=B_r(0),$$
Thus, when $m,nne1$, apply IBP,
begin{align*}
I(m,n)&=-frac m{n+1} I(m-1,n+1)\
&=left(-frac m{n+1}right)left(-frac {m-1}{n+2}right)cdotsleft(-frac {2}{n+m-1}right)color{blue}{I(1,n+m-1)}\
&=frac{(-1)^{m-1}m!}{(n+1)(n+2)cdots(m+n-1)}color{blue}{frac1{n+m}Big{underbrace{big[B_{m+n}(x)B_1(x)big]_0^1}_{=B_{m+n}(0)}-underbrace{I(0,n+m)}_{=0}Big}}\
&=frac{(-1)^{m-1}m!n!}{(m+n)!}B_{m+n}(0).\
end{align*}
The case $m=n=1$ is followed by direct computations.
$endgroup$
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
add a comment |
$begingroup$
Here are some properties,
for integer $k>1$, $B_k(0)=B_k(1)$,
$B_1(1)=-B_1(0)=dfrac 12, B_0(x)equiv1$,
for $kinBbb N$, $I(0,k)=displaystyleint_0^1 B_k(x)~mathrm dx=0$.
Therefore,
for integers $r, s>1$,
$$big[B_r(x)B_s(x)big]_0^1= 0,$$for integer $r>1$,
$$big[B_r(1)B_1(1)big]_0^1=frac12(B_r(1)+B_r(0))=B_r(0),$$
Thus, when $m,nne1$, apply IBP,
begin{align*}
I(m,n)&=-frac m{n+1} I(m-1,n+1)\
&=left(-frac m{n+1}right)left(-frac {m-1}{n+2}right)cdotsleft(-frac {2}{n+m-1}right)color{blue}{I(1,n+m-1)}\
&=frac{(-1)^{m-1}m!}{(n+1)(n+2)cdots(m+n-1)}color{blue}{frac1{n+m}Big{underbrace{big[B_{m+n}(x)B_1(x)big]_0^1}_{=B_{m+n}(0)}-underbrace{I(0,n+m)}_{=0}Big}}\
&=frac{(-1)^{m-1}m!n!}{(m+n)!}B_{m+n}(0).\
end{align*}
The case $m=n=1$ is followed by direct computations.
$endgroup$
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
add a comment |
$begingroup$
Here are some properties,
for integer $k>1$, $B_k(0)=B_k(1)$,
$B_1(1)=-B_1(0)=dfrac 12, B_0(x)equiv1$,
for $kinBbb N$, $I(0,k)=displaystyleint_0^1 B_k(x)~mathrm dx=0$.
Therefore,
for integers $r, s>1$,
$$big[B_r(x)B_s(x)big]_0^1= 0,$$for integer $r>1$,
$$big[B_r(1)B_1(1)big]_0^1=frac12(B_r(1)+B_r(0))=B_r(0),$$
Thus, when $m,nne1$, apply IBP,
begin{align*}
I(m,n)&=-frac m{n+1} I(m-1,n+1)\
&=left(-frac m{n+1}right)left(-frac {m-1}{n+2}right)cdotsleft(-frac {2}{n+m-1}right)color{blue}{I(1,n+m-1)}\
&=frac{(-1)^{m-1}m!}{(n+1)(n+2)cdots(m+n-1)}color{blue}{frac1{n+m}Big{underbrace{big[B_{m+n}(x)B_1(x)big]_0^1}_{=B_{m+n}(0)}-underbrace{I(0,n+m)}_{=0}Big}}\
&=frac{(-1)^{m-1}m!n!}{(m+n)!}B_{m+n}(0).\
end{align*}
The case $m=n=1$ is followed by direct computations.
$endgroup$
Here are some properties,
for integer $k>1$, $B_k(0)=B_k(1)$,
$B_1(1)=-B_1(0)=dfrac 12, B_0(x)equiv1$,
for $kinBbb N$, $I(0,k)=displaystyleint_0^1 B_k(x)~mathrm dx=0$.
Therefore,
for integers $r, s>1$,
$$big[B_r(x)B_s(x)big]_0^1= 0,$$for integer $r>1$,
$$big[B_r(1)B_1(1)big]_0^1=frac12(B_r(1)+B_r(0))=B_r(0),$$
Thus, when $m,nne1$, apply IBP,
begin{align*}
I(m,n)&=-frac m{n+1} I(m-1,n+1)\
&=left(-frac m{n+1}right)left(-frac {m-1}{n+2}right)cdotsleft(-frac {2}{n+m-1}right)color{blue}{I(1,n+m-1)}\
&=frac{(-1)^{m-1}m!}{(n+1)(n+2)cdots(m+n-1)}color{blue}{frac1{n+m}Big{underbrace{big[B_{m+n}(x)B_1(x)big]_0^1}_{=B_{m+n}(0)}-underbrace{I(0,n+m)}_{=0}Big}}\
&=frac{(-1)^{m-1}m!n!}{(m+n)!}B_{m+n}(0).\
end{align*}
The case $m=n=1$ is followed by direct computations.
answered Nov 29 '18 at 19:35
TianlaluTianlalu
3,26521238
3,26521238
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
add a comment |
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
$begingroup$
This is perfect and amazing and beautiful. Thank you very much.
$endgroup$
– clathratus
Nov 29 '18 at 19:41
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017872%2fintegral-identity-involving-bernoulli-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown