Showing that $f(4x) + 4f(2x) =8cos^4(x)-3$, where $f(x) = cos x$












1












$begingroup$



It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$



A) Show that $$f(x)= cos(x)$$



B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$




I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
    $endgroup$
    – rogerl
    Jan 29 at 20:38
















1












$begingroup$



It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$



A) Show that $$f(x)= cos(x)$$



B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$




I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
    $endgroup$
    – rogerl
    Jan 29 at 20:38














1












1








1


1



$begingroup$



It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$



A) Show that $$f(x)= cos(x)$$



B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$




I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.










share|cite|improve this question











$endgroup$





It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$



A) Show that $$f(x)= cos(x)$$



B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$




I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 20:51









Blue

49.3k870157




49.3k870157










asked Jan 29 at 20:31









RhiaRhia

83




83












  • $begingroup$
    Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
    $endgroup$
    – rogerl
    Jan 29 at 20:38


















  • $begingroup$
    Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
    $endgroup$
    – rogerl
    Jan 29 at 20:38
















$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38




$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38










2 Answers
2






active

oldest

votes


















3












$begingroup$

You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$



Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$



By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks so much I got it now
    $endgroup$
    – Rhia
    Jan 29 at 20:57










  • $begingroup$
    You are welcome!
    $endgroup$
    – maxbp
    Jan 29 at 21:04



















1












$begingroup$

$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092686%2fshowing-that-f4x-4f2x-8-cos4x-3-where-fx-cos-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    You can use the property:
    $$cos(2x) = cos^2(x)-sin^2(x)$$



    Since this will allow you to express $cos(4x)$ =
    $$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$



    By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks so much I got it now
      $endgroup$
      – Rhia
      Jan 29 at 20:57










    • $begingroup$
      You are welcome!
      $endgroup$
      – maxbp
      Jan 29 at 21:04
















    3












    $begingroup$

    You can use the property:
    $$cos(2x) = cos^2(x)-sin^2(x)$$



    Since this will allow you to express $cos(4x)$ =
    $$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$



    By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks so much I got it now
      $endgroup$
      – Rhia
      Jan 29 at 20:57










    • $begingroup$
      You are welcome!
      $endgroup$
      – maxbp
      Jan 29 at 21:04














    3












    3








    3





    $begingroup$

    You can use the property:
    $$cos(2x) = cos^2(x)-sin^2(x)$$



    Since this will allow you to express $cos(4x)$ =
    $$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$



    By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.






    share|cite|improve this answer









    $endgroup$



    You can use the property:
    $$cos(2x) = cos^2(x)-sin^2(x)$$



    Since this will allow you to express $cos(4x)$ =
    $$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$



    By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 29 at 20:44









    maxbpmaxbp

    1467




    1467












    • $begingroup$
      Thanks so much I got it now
      $endgroup$
      – Rhia
      Jan 29 at 20:57










    • $begingroup$
      You are welcome!
      $endgroup$
      – maxbp
      Jan 29 at 21:04


















    • $begingroup$
      Thanks so much I got it now
      $endgroup$
      – Rhia
      Jan 29 at 20:57










    • $begingroup$
      You are welcome!
      $endgroup$
      – maxbp
      Jan 29 at 21:04
















    $begingroup$
    Thanks so much I got it now
    $endgroup$
    – Rhia
    Jan 29 at 20:57




    $begingroup$
    Thanks so much I got it now
    $endgroup$
    – Rhia
    Jan 29 at 20:57












    $begingroup$
    You are welcome!
    $endgroup$
    – maxbp
    Jan 29 at 21:04




    $begingroup$
    You are welcome!
    $endgroup$
    – maxbp
    Jan 29 at 21:04











    1












    $begingroup$

    $$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
    Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
      Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
        Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$






        share|cite|improve this answer









        $endgroup$



        $$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
        Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 29 at 20:44









        Michael RozenbergMichael Rozenberg

        109k1896201




        109k1896201






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092686%2fshowing-that-f4x-4f2x-8-cos4x-3-where-fx-cos-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter