Showing that $f(4x) + 4f(2x) =8cos^4(x)-3$, where $f(x) = cos x$
$begingroup$
It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$
A) Show that $$f(x)= cos(x)$$
B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$
I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.
trigonometry
$endgroup$
add a comment |
$begingroup$
It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$
A) Show that $$f(x)= cos(x)$$
B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$
I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.
trigonometry
$endgroup$
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38
add a comment |
$begingroup$
It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$
A) Show that $$f(x)= cos(x)$$
B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$
I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.
trigonometry
$endgroup$
It is given that
$$f(x)= sin(x+30^circ) + cos(x+60^circ)$$
A) Show that $$f(x)= cos(x)$$
B) Hence, show that
$$f(4x) + 4f(2x) =8cos^4(x)-3$$
I managed to prove $f(x)$ equals $cos(x)$, but after that I'm stumped.
trigonometry
trigonometry
edited Jan 29 at 20:51


Blue
49.3k870157
49.3k870157
asked Jan 29 at 20:31


RhiaRhia
83
83
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38
add a comment |
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$
Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$
By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.
$endgroup$
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
add a comment |
$begingroup$
$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092686%2fshowing-that-f4x-4f2x-8-cos4x-3-where-fx-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$
Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$
By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.
$endgroup$
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
add a comment |
$begingroup$
You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$
Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$
By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.
$endgroup$
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
add a comment |
$begingroup$
You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$
Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$
By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.
$endgroup$
You can use the property:
$$cos(2x) = cos^2(x)-sin^2(x)$$
Since this will allow you to express $cos(4x)$ =
$$cos^2(2x)-(1-cos^2(2x)) = 2cos^2(2x)-1$$
By substituting again $cos(2x)$ by the aforementioned expression you will be able to express $4cos(2x)+cos(4x)$ in terms of $sin(x)$ and $cos(x)$ raised to some powers. The sinus will cancell out and will obtained the desired result.
answered Jan 29 at 20:44
maxbpmaxbp
1467
1467
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
add a comment |
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
Thanks so much I got it now
$endgroup$
– Rhia
Jan 29 at 20:57
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
$begingroup$
You are welcome!
$endgroup$
– maxbp
Jan 29 at 21:04
add a comment |
$begingroup$
$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$
$endgroup$
add a comment |
$begingroup$
$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$
$endgroup$
add a comment |
$begingroup$
$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$
$endgroup$
$$f(x)=sin(30^{circ}+x)+sin(30^{circ}-x)=2sin30^{circ}cos{x}=cos{x}.$$
Thus, $$f(4x)+4f(2x)=cos4x+4cos2x=8cos^4x-8cos^2x+1+8cos^2x-4=8cos^4x-3.$$
answered Jan 29 at 20:44
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092686%2fshowing-that-f4x-4f2x-8-cos4x-3-where-fx-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you know how to expand $cos 4x$ and $cos 2x$ in terms of $cos x$? Even easier if you know Euler's formula.
$endgroup$
– rogerl
Jan 29 at 20:38