Simple example of a distribution on +ve natural numbers with $sum_{n=1}^infty n^2 p_n < infty$ and...
$begingroup$
DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).
Question
What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously
finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$
divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?
Edit
User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.
For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.
Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
$$
begin{split}
sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
&= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
end{split}
$$
probability-distributions random-variables elementary-probability
$endgroup$
add a comment |
$begingroup$
DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).
Question
What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously
finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$
divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?
Edit
User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.
For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.
Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
$$
begin{split}
sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
&= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
end{split}
$$
probability-distributions random-variables elementary-probability
$endgroup$
add a comment |
$begingroup$
DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).
Question
What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously
finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$
divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?
Edit
User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.
For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.
Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
$$
begin{split}
sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
&= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
end{split}
$$
probability-distributions random-variables elementary-probability
$endgroup$
DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).
Question
What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously
finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$
divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?
Edit
User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.
For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.
Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
$$
begin{split}
sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
&= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
end{split}
$$
probability-distributions random-variables elementary-probability
probability-distributions random-variables elementary-probability
edited Jan 29 at 23:36
dohmatob
asked Jan 29 at 19:32


dohmatobdohmatob
3,727629
3,727629
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There is no such distribution. Proof: By Cauchy-Schwarz:
$$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$
$endgroup$
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092621%2fsimple-example-of-a-distribution-on-ve-natural-numbers-with-sum-n-1-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is no such distribution. Proof: By Cauchy-Schwarz:
$$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$
$endgroup$
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
add a comment |
$begingroup$
There is no such distribution. Proof: By Cauchy-Schwarz:
$$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$
$endgroup$
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
add a comment |
$begingroup$
There is no such distribution. Proof: By Cauchy-Schwarz:
$$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$
$endgroup$
There is no such distribution. Proof: By Cauchy-Schwarz:
$$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$
answered Jan 29 at 19:38


Stefan LafonStefan Lafon
3,005212
3,005212
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
add a comment |
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Great. Thanks, just chewed out something similar :)
$endgroup$
– dohmatob
Jan 29 at 19:39
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
$begingroup$
Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
$endgroup$
– dohmatob
Jan 29 at 21:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092621%2fsimple-example-of-a-distribution-on-ve-natural-numbers-with-sum-n-1-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown