Simple example of a distribution on +ve natural numbers with $sum_{n=1}^infty n^2 p_n < infty$ and...












1












$begingroup$


DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).



Question



What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously





  • finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$


  • divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?




Edit



User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.




For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.




Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
$$
begin{split}
sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
&= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
end{split}
$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).



    Question



    What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously





    • finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$


    • divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?




    Edit



    User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.




    For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.




    Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
    $$
    begin{split}
    sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
    overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
    &= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
    end{split}
    $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).



      Question



      What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously





      • finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$


      • divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?




      Edit



      User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.




      For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.




      Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
      $$
      begin{split}
      sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
      overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
      &= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
      end{split}
      $$










      share|cite|improve this question











      $endgroup$




      DISCLAIMER: This is probably too elementary and I haven't spent much time thinking about it (as I should).



      Question



      What is a simple example of a distribution $(p_1,p_2,ldots,p_n,ldots)$ on +ve natural numbers (meaning that $p_n ge 0;forall n =1,2,ldots$ and $sum_{n=1}^infty p_n = 1$) satisfying simultaneously





      • finite-second moment: $sum_{n=1}^infty n^2 p_n < infty$


      • divergent square root of probabilities: $sum_{n=1}^infty sqrt{p_n} = infty$ ?




      Edit



      User Stephan Lafon has given a really simple proof which deserves to be expanded upon. In fact one can proof a stronger statement.




      For any $alpha in (1, infty)$, there is no distribution $p:=(p_1,ldots,p_n,ldots)$ with fintite $alpha$-moment such that $sum_n p_n^{1/alpha} = infty$.




      Proof. Let $beta := alpha / (alpha-1) > 1$ be the harmonic conjugate of $alpha$. Define the functions $f,g: {1,2,ldots} rightarrow mathbb R_+$ by $f(n) := 1/n$ and $g(n) := np_n^{1/alpha}$. If $sum_n n^alpha p_n < infty$, then one computes
      $$
      begin{split}
      sum_n p_n^{1/alpha} &= sum_n (1/n) np^{1/alpha} = langle f, grangle
      overset{text{Cauchy-Schwarz}}{le}|f|_beta|g|_alpha = left(sum_n 1/n^betaright)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha}\
      &= zeta(beta)^{1/beta}left(sum_n n^alpha p_nright)^{1/alpha} < infty.
      end{split}
      $$







      probability-distributions random-variables elementary-probability






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 23:36







      dohmatob

















      asked Jan 29 at 19:32









      dohmatobdohmatob

      3,727629




      3,727629






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          There is no such distribution. Proof: By Cauchy-Schwarz:
          $$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Great. Thanks, just chewed out something similar :)
            $endgroup$
            – dohmatob
            Jan 29 at 19:39










          • $begingroup$
            Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
            $endgroup$
            – dohmatob
            Jan 29 at 21:22














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092621%2fsimple-example-of-a-distribution-on-ve-natural-numbers-with-sum-n-1-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          There is no such distribution. Proof: By Cauchy-Schwarz:
          $$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Great. Thanks, just chewed out something similar :)
            $endgroup$
            – dohmatob
            Jan 29 at 19:39










          • $begingroup$
            Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
            $endgroup$
            – dohmatob
            Jan 29 at 21:22


















          4












          $begingroup$

          There is no such distribution. Proof: By Cauchy-Schwarz:
          $$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Great. Thanks, just chewed out something similar :)
            $endgroup$
            – dohmatob
            Jan 29 at 19:39










          • $begingroup$
            Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
            $endgroup$
            – dohmatob
            Jan 29 at 21:22
















          4












          4








          4





          $begingroup$

          There is no such distribution. Proof: By Cauchy-Schwarz:
          $$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$






          share|cite|improve this answer









          $endgroup$



          There is no such distribution. Proof: By Cauchy-Schwarz:
          $$sum_{n=1}^infty sqrt{p_n} = sum_{n=1}^infty frac{n}{n}sqrt{p_n} leq left(sum_{n=1}^infty n^2p_nright)^{frac1 2}left(sum_{n=1}^inftyfrac 1 {n^2}right)^{frac1 2}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 29 at 19:38









          Stefan LafonStefan Lafon

          3,005212




          3,005212












          • $begingroup$
            Great. Thanks, just chewed out something similar :)
            $endgroup$
            – dohmatob
            Jan 29 at 19:39










          • $begingroup$
            Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
            $endgroup$
            – dohmatob
            Jan 29 at 21:22




















          • $begingroup$
            Great. Thanks, just chewed out something similar :)
            $endgroup$
            – dohmatob
            Jan 29 at 19:39










          • $begingroup$
            Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
            $endgroup$
            – dohmatob
            Jan 29 at 21:22


















          $begingroup$
          Great. Thanks, just chewed out something similar :)
          $endgroup$
          – dohmatob
          Jan 29 at 19:39




          $begingroup$
          Great. Thanks, just chewed out something similar :)
          $endgroup$
          – dohmatob
          Jan 29 at 19:39












          $begingroup$
          Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
          $endgroup$
          – dohmatob
          Jan 29 at 21:22






          $begingroup$
          Updated the question with a proof to a slightly more general claim. Yes, still Cauchy-Schwarz at work.
          $endgroup$
          – dohmatob
          Jan 29 at 21:22




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3092621%2fsimple-example-of-a-distribution-on-ve-natural-numbers-with-sum-n-1-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          Npm cannot find a required file even through it is in the searched directory

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith