Finding the cumulative distribution function of the sum of two functions of two independent random variables
$begingroup$
Since we want two real roots, then we're looking for a positive discriminant.
Let $Z$ be the random variable representing the value taken by the discriminant.
So,
$$Z = 4(U^2 - V)$$
However, I don't know where to take it from here.
Any Hints would be really appreciated.
Thanks
probability probability-distributions random-variables
$endgroup$
add a comment |
$begingroup$
Since we want two real roots, then we're looking for a positive discriminant.
Let $Z$ be the random variable representing the value taken by the discriminant.
So,
$$Z = 4(U^2 - V)$$
However, I don't know where to take it from here.
Any Hints would be really appreciated.
Thanks
probability probability-distributions random-variables
$endgroup$
add a comment |
$begingroup$
Since we want two real roots, then we're looking for a positive discriminant.
Let $Z$ be the random variable representing the value taken by the discriminant.
So,
$$Z = 4(U^2 - V)$$
However, I don't know where to take it from here.
Any Hints would be really appreciated.
Thanks
probability probability-distributions random-variables
$endgroup$
Since we want two real roots, then we're looking for a positive discriminant.
Let $Z$ be the random variable representing the value taken by the discriminant.
So,
$$Z = 4(U^2 - V)$$
However, I don't know where to take it from here.
Any Hints would be really appreciated.
Thanks
probability probability-distributions random-variables
probability probability-distributions random-variables
asked Jan 5 at 2:53
SulSul
333114
333114
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We want to find $mathbb P(Z>0)$, or $mathbb P(U^2>V)$. For $0<t<1$ we have
$$
mathbb P(U^2leqslant t) = mathbb P(Uleqslant t^{frac12}) = t^{frac12}
$$
and so $U^2$ has density
$$
f(t) = frac12 t^{-frac12}mathsf 1_{(0,1)}(t).
$$
We know already that $V$ has density $g(t) = mathsf 1_{(0,1)}(t)$, so integrating over the joint density we have
begin{align}
mathbb P(U^2>V) &= int_0^1 int_t^1 frac12 s^{-frac12} mathsf ds mathsf dt\
&= int_0^1 (1-t^{frac12}) mathsf dt\
&= frac13.
end{align}
$endgroup$
add a comment |
$begingroup$
$P{U^{2} >V}=EP({U^{2} >V}|U})=EU^{2}=int _0^{1} u^{2}, du =frac 1 3$.
$endgroup$
add a comment |
$begingroup$
The positive discriminant implies $Z=4(U^2-V)>0$, hence you need to find $mathbb P(U^2-V>0)$. Refer to the graph:
$hspace{1cm}$
The required probability is the green area:
$$mathbb P(U^2-V>0)=mathbb P(V<U^2)=int_0^1 U^2 dU=frac{U^3}{3}bigg{|}_0^1=frac13.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062358%2ffinding-the-cumulative-distribution-function-of-the-sum-of-two-functions-of-two%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We want to find $mathbb P(Z>0)$, or $mathbb P(U^2>V)$. For $0<t<1$ we have
$$
mathbb P(U^2leqslant t) = mathbb P(Uleqslant t^{frac12}) = t^{frac12}
$$
and so $U^2$ has density
$$
f(t) = frac12 t^{-frac12}mathsf 1_{(0,1)}(t).
$$
We know already that $V$ has density $g(t) = mathsf 1_{(0,1)}(t)$, so integrating over the joint density we have
begin{align}
mathbb P(U^2>V) &= int_0^1 int_t^1 frac12 s^{-frac12} mathsf ds mathsf dt\
&= int_0^1 (1-t^{frac12}) mathsf dt\
&= frac13.
end{align}
$endgroup$
add a comment |
$begingroup$
We want to find $mathbb P(Z>0)$, or $mathbb P(U^2>V)$. For $0<t<1$ we have
$$
mathbb P(U^2leqslant t) = mathbb P(Uleqslant t^{frac12}) = t^{frac12}
$$
and so $U^2$ has density
$$
f(t) = frac12 t^{-frac12}mathsf 1_{(0,1)}(t).
$$
We know already that $V$ has density $g(t) = mathsf 1_{(0,1)}(t)$, so integrating over the joint density we have
begin{align}
mathbb P(U^2>V) &= int_0^1 int_t^1 frac12 s^{-frac12} mathsf ds mathsf dt\
&= int_0^1 (1-t^{frac12}) mathsf dt\
&= frac13.
end{align}
$endgroup$
add a comment |
$begingroup$
We want to find $mathbb P(Z>0)$, or $mathbb P(U^2>V)$. For $0<t<1$ we have
$$
mathbb P(U^2leqslant t) = mathbb P(Uleqslant t^{frac12}) = t^{frac12}
$$
and so $U^2$ has density
$$
f(t) = frac12 t^{-frac12}mathsf 1_{(0,1)}(t).
$$
We know already that $V$ has density $g(t) = mathsf 1_{(0,1)}(t)$, so integrating over the joint density we have
begin{align}
mathbb P(U^2>V) &= int_0^1 int_t^1 frac12 s^{-frac12} mathsf ds mathsf dt\
&= int_0^1 (1-t^{frac12}) mathsf dt\
&= frac13.
end{align}
$endgroup$
We want to find $mathbb P(Z>0)$, or $mathbb P(U^2>V)$. For $0<t<1$ we have
$$
mathbb P(U^2leqslant t) = mathbb P(Uleqslant t^{frac12}) = t^{frac12}
$$
and so $U^2$ has density
$$
f(t) = frac12 t^{-frac12}mathsf 1_{(0,1)}(t).
$$
We know already that $V$ has density $g(t) = mathsf 1_{(0,1)}(t)$, so integrating over the joint density we have
begin{align}
mathbb P(U^2>V) &= int_0^1 int_t^1 frac12 s^{-frac12} mathsf ds mathsf dt\
&= int_0^1 (1-t^{frac12}) mathsf dt\
&= frac13.
end{align}
answered Jan 5 at 3:18
Math1000Math1000
19k31745
19k31745
add a comment |
add a comment |
$begingroup$
$P{U^{2} >V}=EP({U^{2} >V}|U})=EU^{2}=int _0^{1} u^{2}, du =frac 1 3$.
$endgroup$
add a comment |
$begingroup$
$P{U^{2} >V}=EP({U^{2} >V}|U})=EU^{2}=int _0^{1} u^{2}, du =frac 1 3$.
$endgroup$
add a comment |
$begingroup$
$P{U^{2} >V}=EP({U^{2} >V}|U})=EU^{2}=int _0^{1} u^{2}, du =frac 1 3$.
$endgroup$
$P{U^{2} >V}=EP({U^{2} >V}|U})=EU^{2}=int _0^{1} u^{2}, du =frac 1 3$.
answered Jan 5 at 5:09
Kavi Rama MurthyKavi Rama Murthy
54.8k32056
54.8k32056
add a comment |
add a comment |
$begingroup$
The positive discriminant implies $Z=4(U^2-V)>0$, hence you need to find $mathbb P(U^2-V>0)$. Refer to the graph:
$hspace{1cm}$
The required probability is the green area:
$$mathbb P(U^2-V>0)=mathbb P(V<U^2)=int_0^1 U^2 dU=frac{U^3}{3}bigg{|}_0^1=frac13.$$
$endgroup$
add a comment |
$begingroup$
The positive discriminant implies $Z=4(U^2-V)>0$, hence you need to find $mathbb P(U^2-V>0)$. Refer to the graph:
$hspace{1cm}$
The required probability is the green area:
$$mathbb P(U^2-V>0)=mathbb P(V<U^2)=int_0^1 U^2 dU=frac{U^3}{3}bigg{|}_0^1=frac13.$$
$endgroup$
add a comment |
$begingroup$
The positive discriminant implies $Z=4(U^2-V)>0$, hence you need to find $mathbb P(U^2-V>0)$. Refer to the graph:
$hspace{1cm}$
The required probability is the green area:
$$mathbb P(U^2-V>0)=mathbb P(V<U^2)=int_0^1 U^2 dU=frac{U^3}{3}bigg{|}_0^1=frac13.$$
$endgroup$
The positive discriminant implies $Z=4(U^2-V)>0$, hence you need to find $mathbb P(U^2-V>0)$. Refer to the graph:
$hspace{1cm}$
The required probability is the green area:
$$mathbb P(U^2-V>0)=mathbb P(V<U^2)=int_0^1 U^2 dU=frac{U^3}{3}bigg{|}_0^1=frac13.$$
answered Jan 5 at 6:31
farruhotafarruhota
19.8k2738
19.8k2738
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062358%2ffinding-the-cumulative-distribution-function-of-the-sum-of-two-functions-of-two%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown