Solve the ODE $ddot{y}+2lambdadot{y} + n^2y=fcos(wt)$ for given boundary conditions.












0












$begingroup$


I'm having trouble understanding the given solution to this problem.



Solve the ODE $$ddot{y}+2lambdadot{y} + n^2y=fcos(wt)$$ with $y(0)=dot{y}(0)=0$, where $f$, $n$, $w$ and $lambda$ are positive constants with $lambda <<n$.



Solution



enter image description here



The 3rd line onward is what I am having difficulty understanding. My attempt is below.



Attempt



$y_h=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))$ where $y_h$ is the homogeneous solution.



For the particular solution guess $y_p=B_1cos(wt)+B_2sin(wt)$, so $dot{y}_p=-B_1 wsin(wt)+B_2 wcos(wt)$, and $ddot{y}_p=-B_1 w^2cos(wt)-B_2 w^2sin(wt)$.



Substitute these into the ODE to get
$$ cos(wt)[B_1 (n^2-w^2)+2lambda w B_2]+sin(wt)[B_2(n^2-w^2)-2lambda w B_1]=fcos(wt).$$



Then $$B_1 (n^2- w^2)+2lambda w B_2 =f quad&quad B_2(n^2-w^2)-2lambda w B_1=0$$



The 2nd equation gives $B_1=B_2dfrac{(n^2-w^2)}{2lambda w}$. Substituting into the 1st equation gives $B_2=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}$, which implies $B_1=dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}$.



Substituting these back into the original guess we get
$$y_p=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



So the general solution is



$$y=y_h+y_p=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))+dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



...and now I just feel lost (partly due to being rusty and the solution being written in a foreign style).










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I'm having trouble understanding the given solution to this problem.



    Solve the ODE $$ddot{y}+2lambdadot{y} + n^2y=fcos(wt)$$ with $y(0)=dot{y}(0)=0$, where $f$, $n$, $w$ and $lambda$ are positive constants with $lambda <<n$.



    Solution



    enter image description here



    The 3rd line onward is what I am having difficulty understanding. My attempt is below.



    Attempt



    $y_h=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))$ where $y_h$ is the homogeneous solution.



    For the particular solution guess $y_p=B_1cos(wt)+B_2sin(wt)$, so $dot{y}_p=-B_1 wsin(wt)+B_2 wcos(wt)$, and $ddot{y}_p=-B_1 w^2cos(wt)-B_2 w^2sin(wt)$.



    Substitute these into the ODE to get
    $$ cos(wt)[B_1 (n^2-w^2)+2lambda w B_2]+sin(wt)[B_2(n^2-w^2)-2lambda w B_1]=fcos(wt).$$



    Then $$B_1 (n^2- w^2)+2lambda w B_2 =f quad&quad B_2(n^2-w^2)-2lambda w B_1=0$$



    The 2nd equation gives $B_1=B_2dfrac{(n^2-w^2)}{2lambda w}$. Substituting into the 1st equation gives $B_2=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}$, which implies $B_1=dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}$.



    Substituting these back into the original guess we get
    $$y_p=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



    So the general solution is



    $$y=y_h+y_p=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))+dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



    ...and now I just feel lost (partly due to being rusty and the solution being written in a foreign style).










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      I'm having trouble understanding the given solution to this problem.



      Solve the ODE $$ddot{y}+2lambdadot{y} + n^2y=fcos(wt)$$ with $y(0)=dot{y}(0)=0$, where $f$, $n$, $w$ and $lambda$ are positive constants with $lambda <<n$.



      Solution



      enter image description here



      The 3rd line onward is what I am having difficulty understanding. My attempt is below.



      Attempt



      $y_h=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))$ where $y_h$ is the homogeneous solution.



      For the particular solution guess $y_p=B_1cos(wt)+B_2sin(wt)$, so $dot{y}_p=-B_1 wsin(wt)+B_2 wcos(wt)$, and $ddot{y}_p=-B_1 w^2cos(wt)-B_2 w^2sin(wt)$.



      Substitute these into the ODE to get
      $$ cos(wt)[B_1 (n^2-w^2)+2lambda w B_2]+sin(wt)[B_2(n^2-w^2)-2lambda w B_1]=fcos(wt).$$



      Then $$B_1 (n^2- w^2)+2lambda w B_2 =f quad&quad B_2(n^2-w^2)-2lambda w B_1=0$$



      The 2nd equation gives $B_1=B_2dfrac{(n^2-w^2)}{2lambda w}$. Substituting into the 1st equation gives $B_2=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}$, which implies $B_1=dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}$.



      Substituting these back into the original guess we get
      $$y_p=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



      So the general solution is



      $$y=y_h+y_p=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))+dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



      ...and now I just feel lost (partly due to being rusty and the solution being written in a foreign style).










      share|cite|improve this question









      $endgroup$




      I'm having trouble understanding the given solution to this problem.



      Solve the ODE $$ddot{y}+2lambdadot{y} + n^2y=fcos(wt)$$ with $y(0)=dot{y}(0)=0$, where $f$, $n$, $w$ and $lambda$ are positive constants with $lambda <<n$.



      Solution



      enter image description here



      The 3rd line onward is what I am having difficulty understanding. My attempt is below.



      Attempt



      $y_h=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))$ where $y_h$ is the homogeneous solution.



      For the particular solution guess $y_p=B_1cos(wt)+B_2sin(wt)$, so $dot{y}_p=-B_1 wsin(wt)+B_2 wcos(wt)$, and $ddot{y}_p=-B_1 w^2cos(wt)-B_2 w^2sin(wt)$.



      Substitute these into the ODE to get
      $$ cos(wt)[B_1 (n^2-w^2)+2lambda w B_2]+sin(wt)[B_2(n^2-w^2)-2lambda w B_1]=fcos(wt).$$



      Then $$B_1 (n^2- w^2)+2lambda w B_2 =f quad&quad B_2(n^2-w^2)-2lambda w B_1=0$$



      The 2nd equation gives $B_1=B_2dfrac{(n^2-w^2)}{2lambda w}$. Substituting into the 1st equation gives $B_2=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}$, which implies $B_1=dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}$.



      Substituting these back into the original guess we get
      $$y_p=dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



      So the general solution is



      $$y=y_h+y_p=e^{-lambda t}(A_1cos(sigma t)+A_2sin(sigma t))+dfrac{2lambda w f}{(n^2-w^2)^2+4lambda^2w^2}cos(wt)+dfrac{f(n^2-w^2)}{(n^2-w^2)^2+4lambda^2w^2}sin(wt).$$



      ...and now I just feel lost (partly due to being rusty and the solution being written in a foreign style).







      ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 5 at 2:57









      Ryan TandyRyan Tandy

      16410




      16410






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          The solutions are both correct, if you were to insert the constants $B_1,B_2$ correctly back into $y_p$. The difference of the forms is "hidden" in the not largely discussed nature of $alpha$.



          The cited solution considers the original equation as the real part of the complex equation
          $$
          ddot z+2λdot z+n^2z=f,e^{iomega t}.
          $$

          This equation now only has a single exponential as inhomogeneity, so that the standard procedure of the method of undetermined coefficients easily applies, trying $z_p(t)=C,e^{iomega t}$ one finds $$C=frac{f}{-ω^2+2iλω+n^2}.$$



          At this point, instead of using the polar decomposition of $C=Rcdot e^{iα}$, you could as well just compute the real part of the solution found,
          $$
          y_p(t)=Re(z_p(t))=Releft(frac{f((n^2-ω^2)-2iλω)(cos ωt+isin ωt)}{(n^2-ω^2)^2+(2λω)^2}right)
          \
          =frac{f((n^2-ω^2)cos ωt+2λωsin ωt)}{(n^2-ω^2)^2+(2λω)^2}
          $$

          which is your solution with the constants inserted correctly.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            This kind of DE (linear with constant coefficients) is well suited to be solved with the called operational methods like the Laplace transform method. After applying the transform we have:



            $$
            mathcal{L}left(ddot{y}+2lambdadot{y} + n^2yright)=mathcal{L}left(fcos(wt)right)
            $$



            or



            $$
            s^2Y(s)-sy_0-dot y_0+2lambda(s Y(s)-y_0)+n^2Y(s) = frac{f s}{s^2+w^2}
            $$



            or



            $$
            Y(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}+frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
            $$



            here we have



            $$
            Y_h(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}\
            Y_p(s) = frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
            $$



            $Y_h(s)$ is the homogeneous solution which in this case is null due to the initial conditions $dot y_0=y_0= 0$ so here



            $$
            y(t) = mathcal{L}^{-1}left(frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}right)
            $$



            that can be easily determined using the anti-transform tables.



            NOTE



            $$
            frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)} = frac{a_1 s+ b_1}{s^2+w^2}+frac{a_2s+b_2}{s^2+2lambda s+n^2}
            $$



            and



            $$
            mathcal{L}^{-1}left(frac{a_1 s+ b_1}{s^2+w^2}right) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)\
            mathcal{L}^{-1}left(frac{a_2s+b_2}{s^2+2lambda s+n^2}right) = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
            ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
            $$



            Here $phi(t)$ is the Heavside step function. We can observe also that



            $$
            y_p(t) = y_{ss}(t)+y_{tr}(t)
            $$



            with



            $$
            y_{ss}(t) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)
            $$



            the steady state response to the forcing input $(fcos(wt))$



            and



            $$
            y_{tr} = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
            ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
            $$



            the transitory response to the forcing input






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062363%2fsolve-the-ode-ddoty2-lambda-doty-n2y-f-coswt-for-given-boundary-con%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              The solutions are both correct, if you were to insert the constants $B_1,B_2$ correctly back into $y_p$. The difference of the forms is "hidden" in the not largely discussed nature of $alpha$.



              The cited solution considers the original equation as the real part of the complex equation
              $$
              ddot z+2λdot z+n^2z=f,e^{iomega t}.
              $$

              This equation now only has a single exponential as inhomogeneity, so that the standard procedure of the method of undetermined coefficients easily applies, trying $z_p(t)=C,e^{iomega t}$ one finds $$C=frac{f}{-ω^2+2iλω+n^2}.$$



              At this point, instead of using the polar decomposition of $C=Rcdot e^{iα}$, you could as well just compute the real part of the solution found,
              $$
              y_p(t)=Re(z_p(t))=Releft(frac{f((n^2-ω^2)-2iλω)(cos ωt+isin ωt)}{(n^2-ω^2)^2+(2λω)^2}right)
              \
              =frac{f((n^2-ω^2)cos ωt+2λωsin ωt)}{(n^2-ω^2)^2+(2λω)^2}
              $$

              which is your solution with the constants inserted correctly.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                The solutions are both correct, if you were to insert the constants $B_1,B_2$ correctly back into $y_p$. The difference of the forms is "hidden" in the not largely discussed nature of $alpha$.



                The cited solution considers the original equation as the real part of the complex equation
                $$
                ddot z+2λdot z+n^2z=f,e^{iomega t}.
                $$

                This equation now only has a single exponential as inhomogeneity, so that the standard procedure of the method of undetermined coefficients easily applies, trying $z_p(t)=C,e^{iomega t}$ one finds $$C=frac{f}{-ω^2+2iλω+n^2}.$$



                At this point, instead of using the polar decomposition of $C=Rcdot e^{iα}$, you could as well just compute the real part of the solution found,
                $$
                y_p(t)=Re(z_p(t))=Releft(frac{f((n^2-ω^2)-2iλω)(cos ωt+isin ωt)}{(n^2-ω^2)^2+(2λω)^2}right)
                \
                =frac{f((n^2-ω^2)cos ωt+2λωsin ωt)}{(n^2-ω^2)^2+(2λω)^2}
                $$

                which is your solution with the constants inserted correctly.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  The solutions are both correct, if you were to insert the constants $B_1,B_2$ correctly back into $y_p$. The difference of the forms is "hidden" in the not largely discussed nature of $alpha$.



                  The cited solution considers the original equation as the real part of the complex equation
                  $$
                  ddot z+2λdot z+n^2z=f,e^{iomega t}.
                  $$

                  This equation now only has a single exponential as inhomogeneity, so that the standard procedure of the method of undetermined coefficients easily applies, trying $z_p(t)=C,e^{iomega t}$ one finds $$C=frac{f}{-ω^2+2iλω+n^2}.$$



                  At this point, instead of using the polar decomposition of $C=Rcdot e^{iα}$, you could as well just compute the real part of the solution found,
                  $$
                  y_p(t)=Re(z_p(t))=Releft(frac{f((n^2-ω^2)-2iλω)(cos ωt+isin ωt)}{(n^2-ω^2)^2+(2λω)^2}right)
                  \
                  =frac{f((n^2-ω^2)cos ωt+2λωsin ωt)}{(n^2-ω^2)^2+(2λω)^2}
                  $$

                  which is your solution with the constants inserted correctly.






                  share|cite|improve this answer











                  $endgroup$



                  The solutions are both correct, if you were to insert the constants $B_1,B_2$ correctly back into $y_p$. The difference of the forms is "hidden" in the not largely discussed nature of $alpha$.



                  The cited solution considers the original equation as the real part of the complex equation
                  $$
                  ddot z+2λdot z+n^2z=f,e^{iomega t}.
                  $$

                  This equation now only has a single exponential as inhomogeneity, so that the standard procedure of the method of undetermined coefficients easily applies, trying $z_p(t)=C,e^{iomega t}$ one finds $$C=frac{f}{-ω^2+2iλω+n^2}.$$



                  At this point, instead of using the polar decomposition of $C=Rcdot e^{iα}$, you could as well just compute the real part of the solution found,
                  $$
                  y_p(t)=Re(z_p(t))=Releft(frac{f((n^2-ω^2)-2iλω)(cos ωt+isin ωt)}{(n^2-ω^2)^2+(2λω)^2}right)
                  \
                  =frac{f((n^2-ω^2)cos ωt+2λωsin ωt)}{(n^2-ω^2)^2+(2λω)^2}
                  $$

                  which is your solution with the constants inserted correctly.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 5 at 11:12

























                  answered Jan 5 at 10:50









                  LutzLLutzL

                  57.3k42054




                  57.3k42054























                      1












                      $begingroup$

                      This kind of DE (linear with constant coefficients) is well suited to be solved with the called operational methods like the Laplace transform method. After applying the transform we have:



                      $$
                      mathcal{L}left(ddot{y}+2lambdadot{y} + n^2yright)=mathcal{L}left(fcos(wt)right)
                      $$



                      or



                      $$
                      s^2Y(s)-sy_0-dot y_0+2lambda(s Y(s)-y_0)+n^2Y(s) = frac{f s}{s^2+w^2}
                      $$



                      or



                      $$
                      Y(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}+frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                      $$



                      here we have



                      $$
                      Y_h(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}\
                      Y_p(s) = frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                      $$



                      $Y_h(s)$ is the homogeneous solution which in this case is null due to the initial conditions $dot y_0=y_0= 0$ so here



                      $$
                      y(t) = mathcal{L}^{-1}left(frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}right)
                      $$



                      that can be easily determined using the anti-transform tables.



                      NOTE



                      $$
                      frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)} = frac{a_1 s+ b_1}{s^2+w^2}+frac{a_2s+b_2}{s^2+2lambda s+n^2}
                      $$



                      and



                      $$
                      mathcal{L}^{-1}left(frac{a_1 s+ b_1}{s^2+w^2}right) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)\
                      mathcal{L}^{-1}left(frac{a_2s+b_2}{s^2+2lambda s+n^2}right) = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                      ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                      $$



                      Here $phi(t)$ is the Heavside step function. We can observe also that



                      $$
                      y_p(t) = y_{ss}(t)+y_{tr}(t)
                      $$



                      with



                      $$
                      y_{ss}(t) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)
                      $$



                      the steady state response to the forcing input $(fcos(wt))$



                      and



                      $$
                      y_{tr} = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                      ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                      $$



                      the transitory response to the forcing input






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        This kind of DE (linear with constant coefficients) is well suited to be solved with the called operational methods like the Laplace transform method. After applying the transform we have:



                        $$
                        mathcal{L}left(ddot{y}+2lambdadot{y} + n^2yright)=mathcal{L}left(fcos(wt)right)
                        $$



                        or



                        $$
                        s^2Y(s)-sy_0-dot y_0+2lambda(s Y(s)-y_0)+n^2Y(s) = frac{f s}{s^2+w^2}
                        $$



                        or



                        $$
                        Y(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}+frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                        $$



                        here we have



                        $$
                        Y_h(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}\
                        Y_p(s) = frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                        $$



                        $Y_h(s)$ is the homogeneous solution which in this case is null due to the initial conditions $dot y_0=y_0= 0$ so here



                        $$
                        y(t) = mathcal{L}^{-1}left(frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}right)
                        $$



                        that can be easily determined using the anti-transform tables.



                        NOTE



                        $$
                        frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)} = frac{a_1 s+ b_1}{s^2+w^2}+frac{a_2s+b_2}{s^2+2lambda s+n^2}
                        $$



                        and



                        $$
                        mathcal{L}^{-1}left(frac{a_1 s+ b_1}{s^2+w^2}right) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)\
                        mathcal{L}^{-1}left(frac{a_2s+b_2}{s^2+2lambda s+n^2}right) = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                        ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                        $$



                        Here $phi(t)$ is the Heavside step function. We can observe also that



                        $$
                        y_p(t) = y_{ss}(t)+y_{tr}(t)
                        $$



                        with



                        $$
                        y_{ss}(t) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)
                        $$



                        the steady state response to the forcing input $(fcos(wt))$



                        and



                        $$
                        y_{tr} = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                        ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                        $$



                        the transitory response to the forcing input






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          This kind of DE (linear with constant coefficients) is well suited to be solved with the called operational methods like the Laplace transform method. After applying the transform we have:



                          $$
                          mathcal{L}left(ddot{y}+2lambdadot{y} + n^2yright)=mathcal{L}left(fcos(wt)right)
                          $$



                          or



                          $$
                          s^2Y(s)-sy_0-dot y_0+2lambda(s Y(s)-y_0)+n^2Y(s) = frac{f s}{s^2+w^2}
                          $$



                          or



                          $$
                          Y(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}+frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                          $$



                          here we have



                          $$
                          Y_h(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}\
                          Y_p(s) = frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                          $$



                          $Y_h(s)$ is the homogeneous solution which in this case is null due to the initial conditions $dot y_0=y_0= 0$ so here



                          $$
                          y(t) = mathcal{L}^{-1}left(frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}right)
                          $$



                          that can be easily determined using the anti-transform tables.



                          NOTE



                          $$
                          frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)} = frac{a_1 s+ b_1}{s^2+w^2}+frac{a_2s+b_2}{s^2+2lambda s+n^2}
                          $$



                          and



                          $$
                          mathcal{L}^{-1}left(frac{a_1 s+ b_1}{s^2+w^2}right) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)\
                          mathcal{L}^{-1}left(frac{a_2s+b_2}{s^2+2lambda s+n^2}right) = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                          ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                          $$



                          Here $phi(t)$ is the Heavside step function. We can observe also that



                          $$
                          y_p(t) = y_{ss}(t)+y_{tr}(t)
                          $$



                          with



                          $$
                          y_{ss}(t) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)
                          $$



                          the steady state response to the forcing input $(fcos(wt))$



                          and



                          $$
                          y_{tr} = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                          ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                          $$



                          the transitory response to the forcing input






                          share|cite|improve this answer











                          $endgroup$



                          This kind of DE (linear with constant coefficients) is well suited to be solved with the called operational methods like the Laplace transform method. After applying the transform we have:



                          $$
                          mathcal{L}left(ddot{y}+2lambdadot{y} + n^2yright)=mathcal{L}left(fcos(wt)right)
                          $$



                          or



                          $$
                          s^2Y(s)-sy_0-dot y_0+2lambda(s Y(s)-y_0)+n^2Y(s) = frac{f s}{s^2+w^2}
                          $$



                          or



                          $$
                          Y(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}+frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                          $$



                          here we have



                          $$
                          Y_h(s) = frac{(s+2lambda)y_0+dot y_0}{s^2+2lambda s+n^2}\
                          Y_p(s) = frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}
                          $$



                          $Y_h(s)$ is the homogeneous solution which in this case is null due to the initial conditions $dot y_0=y_0= 0$ so here



                          $$
                          y(t) = mathcal{L}^{-1}left(frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)}right)
                          $$



                          that can be easily determined using the anti-transform tables.



                          NOTE



                          $$
                          frac{f s}{(s^2+w^2)(s^2+2lambda s+n^2)} = frac{a_1 s+ b_1}{s^2+w^2}+frac{a_2s+b_2}{s^2+2lambda s+n^2}
                          $$



                          and



                          $$
                          mathcal{L}^{-1}left(frac{a_1 s+ b_1}{s^2+w^2}right) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)\
                          mathcal{L}^{-1}left(frac{a_2s+b_2}{s^2+2lambda s+n^2}right) = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                          ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                          $$



                          Here $phi(t)$ is the Heavside step function. We can observe also that



                          $$
                          y_p(t) = y_{ss}(t)+y_{tr}(t)
                          $$



                          with



                          $$
                          y_{ss}(t) = frac 1 w(a_1 w cos (w t)+b_1 sin (w t))phi(t)
                          $$



                          the steady state response to the forcing input $(fcos(wt))$



                          and



                          $$
                          y_{tr} = frac{e^{-lambda t} left((b_2-a_2 lambda ) sinh left(t sqrt{lambda ^2-n^2}right)+a_2 sqrt{(lambda -n) (lambda +n)} cosh left(t sqrt{lambda
                          ^2-n^2}right)right)}{sqrt{(lambda -n) (lambda +n)}}phi(t)
                          $$



                          the transitory response to the forcing input







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 5 at 11:02

























                          answered Jan 5 at 10:23









                          CesareoCesareo

                          8,6343516




                          8,6343516






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062363%2fsolve-the-ode-ddoty2-lambda-doty-n2y-f-coswt-for-given-boundary-con%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]