inverse z-transform of $frac{1}{(1-z^{-1})^{2}}$












0












$begingroup$


how to find inverse-z-transform of:



$$
x[n] = Z-Transformleft{ frac{1}{(1-z^{-1})^{2}} right}
$$



I could convert it to convolution... but then i'm stuck with solving convolution...which i'm not really sure how to perform either.



A few z-transform table definitions I'm looking at to solve the problem:



$$
begin{aligned}
X(z) &= sum_{n=-infty}^{infty} x[n] z^{-n} \
\
alpha^{n} u[n] &<=> frac{1}{1-alpha z^{-1}} \
\
x[n]*y[n] &<=> X(z) Y(z) \
\
x[n-k] &<=> z^{-k}X(z)
end{aligned}
$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
    $endgroup$
    – lab bhattacharjee
    Jan 5 at 2:06
















0












$begingroup$


how to find inverse-z-transform of:



$$
x[n] = Z-Transformleft{ frac{1}{(1-z^{-1})^{2}} right}
$$



I could convert it to convolution... but then i'm stuck with solving convolution...which i'm not really sure how to perform either.



A few z-transform table definitions I'm looking at to solve the problem:



$$
begin{aligned}
X(z) &= sum_{n=-infty}^{infty} x[n] z^{-n} \
\
alpha^{n} u[n] &<=> frac{1}{1-alpha z^{-1}} \
\
x[n]*y[n] &<=> X(z) Y(z) \
\
x[n-k] &<=> z^{-k}X(z)
end{aligned}
$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
    $endgroup$
    – lab bhattacharjee
    Jan 5 at 2:06














0












0








0





$begingroup$


how to find inverse-z-transform of:



$$
x[n] = Z-Transformleft{ frac{1}{(1-z^{-1})^{2}} right}
$$



I could convert it to convolution... but then i'm stuck with solving convolution...which i'm not really sure how to perform either.



A few z-transform table definitions I'm looking at to solve the problem:



$$
begin{aligned}
X(z) &= sum_{n=-infty}^{infty} x[n] z^{-n} \
\
alpha^{n} u[n] &<=> frac{1}{1-alpha z^{-1}} \
\
x[n]*y[n] &<=> X(z) Y(z) \
\
x[n-k] &<=> z^{-k}X(z)
end{aligned}
$$










share|cite|improve this question









$endgroup$




how to find inverse-z-transform of:



$$
x[n] = Z-Transformleft{ frac{1}{(1-z^{-1})^{2}} right}
$$



I could convert it to convolution... but then i'm stuck with solving convolution...which i'm not really sure how to perform either.



A few z-transform table definitions I'm looking at to solve the problem:



$$
begin{aligned}
X(z) &= sum_{n=-infty}^{infty} x[n] z^{-n} \
\
alpha^{n} u[n] &<=> frac{1}{1-alpha z^{-1}} \
\
x[n]*y[n] &<=> X(z) Y(z) \
\
x[n-k] &<=> z^{-k}X(z)
end{aligned}
$$







z-transform






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 at 1:56









JoJoJoJo

1




1












  • $begingroup$
    Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
    $endgroup$
    – lab bhattacharjee
    Jan 5 at 2:06


















  • $begingroup$
    Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
    $endgroup$
    – lab bhattacharjee
    Jan 5 at 2:06
















$begingroup$
Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
$endgroup$
– lab bhattacharjee
Jan 5 at 2:06




$begingroup$
Use $3,4,5,6$ of en.m.wikipedia.org/wiki/…
$endgroup$
– lab bhattacharjee
Jan 5 at 2:06










1 Answer
1






active

oldest

votes


















0












$begingroup$

for positive m:
$$
left(begin{array}{c} n + m - 1 \ m - 1 end{array} right) a^n u[n] <=> frac{1}{(1-a z^{-1})^m}
$$



$$
left(begin{matrix}n\k\end{matrix}right)=frac{nleft(n-1right)ldotsleft(n-k+1right)}{kleft(k-1right)ldots1}
$$



for m=2:



$$
(n+1) a^{n} u[n] <=> frac{1}{(1-az^{-1})^2} ROC: |z| > |a|
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062329%2finverse-z-transform-of-frac11-z-12%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    for positive m:
    $$
    left(begin{array}{c} n + m - 1 \ m - 1 end{array} right) a^n u[n] <=> frac{1}{(1-a z^{-1})^m}
    $$



    $$
    left(begin{matrix}n\k\end{matrix}right)=frac{nleft(n-1right)ldotsleft(n-k+1right)}{kleft(k-1right)ldots1}
    $$



    for m=2:



    $$
    (n+1) a^{n} u[n] <=> frac{1}{(1-az^{-1})^2} ROC: |z| > |a|
    $$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      for positive m:
      $$
      left(begin{array}{c} n + m - 1 \ m - 1 end{array} right) a^n u[n] <=> frac{1}{(1-a z^{-1})^m}
      $$



      $$
      left(begin{matrix}n\k\end{matrix}right)=frac{nleft(n-1right)ldotsleft(n-k+1right)}{kleft(k-1right)ldots1}
      $$



      for m=2:



      $$
      (n+1) a^{n} u[n] <=> frac{1}{(1-az^{-1})^2} ROC: |z| > |a|
      $$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        for positive m:
        $$
        left(begin{array}{c} n + m - 1 \ m - 1 end{array} right) a^n u[n] <=> frac{1}{(1-a z^{-1})^m}
        $$



        $$
        left(begin{matrix}n\k\end{matrix}right)=frac{nleft(n-1right)ldotsleft(n-k+1right)}{kleft(k-1right)ldots1}
        $$



        for m=2:



        $$
        (n+1) a^{n} u[n] <=> frac{1}{(1-az^{-1})^2} ROC: |z| > |a|
        $$






        share|cite|improve this answer









        $endgroup$



        for positive m:
        $$
        left(begin{array}{c} n + m - 1 \ m - 1 end{array} right) a^n u[n] <=> frac{1}{(1-a z^{-1})^m}
        $$



        $$
        left(begin{matrix}n\k\end{matrix}right)=frac{nleft(n-1right)ldotsleft(n-k+1right)}{kleft(k-1right)ldots1}
        $$



        for m=2:



        $$
        (n+1) a^{n} u[n] <=> frac{1}{(1-az^{-1})^2} ROC: |z| > |a|
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 5 at 1:59









        JoJoJoJo

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062329%2finverse-z-transform-of-frac11-z-12%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]