$frac{sqrt{12x}}{2+2sqrt{3}}$ simplifies to $frac{3sqrt{x}-sqrt{3x}}{2}$ but I get $-12x + 6xsqrt{3}$












0












$begingroup$


I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.



My working:



$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$



Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$



Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
    $endgroup$
    – fleablood
    Jan 6 at 19:02






  • 2




    $begingroup$
    Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
    $endgroup$
    – TonyK
    Jan 6 at 19:07












  • $begingroup$
    And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
    $endgroup$
    – TonyK
    Jan 6 at 19:08










  • $begingroup$
    @TonyK good catch.
    $endgroup$
    – fleablood
    Jan 6 at 19:08
















0












$begingroup$


I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.



My working:



$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$



Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$



Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
    $endgroup$
    – fleablood
    Jan 6 at 19:02






  • 2




    $begingroup$
    Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
    $endgroup$
    – TonyK
    Jan 6 at 19:07












  • $begingroup$
    And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
    $endgroup$
    – TonyK
    Jan 6 at 19:08










  • $begingroup$
    @TonyK good catch.
    $endgroup$
    – fleablood
    Jan 6 at 19:08














0












0








0





$begingroup$


I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.



My working:



$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$



Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$



Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?










share|cite|improve this question











$endgroup$




I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.



My working:



$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$



Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$



Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?







algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 19:07









egreg

180k1485202




180k1485202










asked Jan 6 at 18:59









Doug FirDoug Fir

3227




3227








  • 2




    $begingroup$
    Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
    $endgroup$
    – fleablood
    Jan 6 at 19:02






  • 2




    $begingroup$
    Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
    $endgroup$
    – TonyK
    Jan 6 at 19:07












  • $begingroup$
    And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
    $endgroup$
    – TonyK
    Jan 6 at 19:08










  • $begingroup$
    @TonyK good catch.
    $endgroup$
    – fleablood
    Jan 6 at 19:08














  • 2




    $begingroup$
    Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
    $endgroup$
    – fleablood
    Jan 6 at 19:02






  • 2




    $begingroup$
    Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
    $endgroup$
    – TonyK
    Jan 6 at 19:07












  • $begingroup$
    And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
    $endgroup$
    – TonyK
    Jan 6 at 19:08










  • $begingroup$
    @TonyK good catch.
    $endgroup$
    – fleablood
    Jan 6 at 19:08








2




2




$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02




$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02




2




2




$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07






$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07














$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08




$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08












$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08




$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08










2 Answers
2






active

oldest

votes


















4












$begingroup$

First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$

Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$

Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.



On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$



    You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.



    And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.



    You should have done:



    $frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
      $endgroup$
      – Doug Fir
      Jan 6 at 19:19











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064264%2ffrac-sqrt12x22-sqrt3-simplifies-to-frac3-sqrtx-sqrt3x2-b%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    First error:
    $$
    sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
    $$

    Second error:
    $$
    (2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
    $$

    Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.



    On the other hand, you can proceed more simply:
    $$
    frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
    =frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
    frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
    $$






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      First error:
      $$
      sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
      $$

      Second error:
      $$
      (2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
      $$

      Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.



      On the other hand, you can proceed more simply:
      $$
      frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
      =frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
      frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
      $$






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        First error:
        $$
        sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
        $$

        Second error:
        $$
        (2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
        $$

        Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.



        On the other hand, you can proceed more simply:
        $$
        frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
        =frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
        frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
        $$






        share|cite|improve this answer









        $endgroup$



        First error:
        $$
        sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
        $$

        Second error:
        $$
        (2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
        $$

        Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.



        On the other hand, you can proceed more simply:
        $$
        frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
        =frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
        frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 6 at 19:13









        egregegreg

        180k1485202




        180k1485202























            2












            $begingroup$

            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$



            You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.



            And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.



            You should have done:



            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
              $endgroup$
              – Doug Fir
              Jan 6 at 19:19
















            2












            $begingroup$

            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$



            You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.



            And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.



            You should have done:



            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
              $endgroup$
              – Doug Fir
              Jan 6 at 19:19














            2












            2








            2





            $begingroup$

            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$



            You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.



            And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.



            You should have done:



            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$






            share|cite|improve this answer











            $endgroup$



            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$



            You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.



            And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.



            You should have done:



            $frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 6 at 19:17

























            answered Jan 6 at 19:06









            fleabloodfleablood

            69.4k22685




            69.4k22685












            • $begingroup$
              Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
              $endgroup$
              – Doug Fir
              Jan 6 at 19:19


















            • $begingroup$
              Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
              $endgroup$
              – Doug Fir
              Jan 6 at 19:19
















            $begingroup$
            Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
            $endgroup$
            – Doug Fir
            Jan 6 at 19:19




            $begingroup$
            Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
            $endgroup$
            – Doug Fir
            Jan 6 at 19:19


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064264%2ffrac-sqrt12x22-sqrt3-simplifies-to-frac3-sqrtx-sqrt3x2-b%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith