$frac{sqrt{12x}}{2+2sqrt{3}}$ simplifies to $frac{3sqrt{x}-sqrt{3x}}{2}$ but I get $-12x + 6xsqrt{3}$
$begingroup$
I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.
My working:
$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$
Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$
Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.
My working:
$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$
Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$
Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?
algebra-precalculus
$endgroup$
2
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
2
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08
add a comment |
$begingroup$
I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.
My working:
$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$
Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$
Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?
algebra-precalculus
$endgroup$
I am asked to simplify $frac{sqrt{12x}}{2+2sqrt{3}}$ and the solution is provided as $frac{3sqrt{x}-sqrt{3x}}{2}$. I arrived at $-12x + 6xsqrt{3}$ and I'm not sure how to arrive at the text book solution.
My working:
$$frac{sqrt{12x}}{2+2sqrt{3}} = frac{sqrt{12x}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}} = frac{12x(2-sqrt{3})}{(2+2sqrt{3})(2-sqrt{3})} = frac{24x-12xsqrt{3}}{4+(2cdot(-3))}=frac{24x-12xsqrt{3}}{-2}$$
Then, multiplying out the denominator I get:
$-12x+6xsqrt{3}$
Is my thought process sound up to a point? Where did I go wrong and how can I arrive at $frac{3sqrt{x}-sqrt{3x}}{2}$?
algebra-precalculus
algebra-precalculus
edited Jan 6 at 19:07


egreg
180k1485202
180k1485202
asked Jan 6 at 18:59
Doug FirDoug Fir
3227
3227
2
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
2
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08
add a comment |
2
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
2
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08
2
2
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
2
2
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$
Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$
Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.
On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$
$endgroup$
add a comment |
$begingroup$
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$
You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.
And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.
You should have done:
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$
$endgroup$
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064264%2ffrac-sqrt12x22-sqrt3-simplifies-to-frac3-sqrtx-sqrt3x2-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$
Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$
Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.
On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$
$endgroup$
add a comment |
$begingroup$
First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$
Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$
Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.
On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$
$endgroup$
add a comment |
$begingroup$
First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$
Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$
Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.
On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$
$endgroup$
First error:
$$
sqrt{12x}(2-sqrt{3})ne 12x(2-sqrt{3})
$$
Second error:
$$
(2+2sqrt{3})(2-sqrt{3})=4+4sqrt{3}-2sqrt{3}-2cdot3=2sqrt{3}-2ne-2
$$
Third error: in order to rationalize the denominator, you have to multiply by $2-2sqrt{3}$.
On the other hand, you can proceed more simply:
$$
frac{sqrt{12x}}{2+2sqrt{3}}=frac{2sqrt{3x}}{2(sqrt{3}+1)}
=frac{sqrt{3x}}{sqrt{3}+1}frac{sqrt{3}-1}{sqrt{3}-1}=
frac{sqrt{9x}-sqrt{3x}}{3-1}=frac{3sqrt{x}-sqrt{3x}}{2}
$$
answered Jan 6 at 19:13


egregegreg
180k1485202
180k1485202
add a comment |
add a comment |
$begingroup$
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$
You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.
And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.
You should have done:
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$
$endgroup$
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
add a comment |
$begingroup$
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$
You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.
And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.
You should have done:
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$
$endgroup$
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
add a comment |
$begingroup$
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$
You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.
And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.
You should have done:
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$
$endgroup$
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{color{green}{sqrt{12x}}}{2+2sqrt{3}}frac{2 - sqrt{3}}{2 - sqrt{3}}=frac{color{red}{12x}(2-sqrt{3})}{color{purple}{(2+2sqrt{3})(2-sqrt{3})}} = frac{24x-12xsqrt{3}}{color{orange}{4+(2cdot(-3))}}=frac{24x-12xsqrt{3}}{-2}$
You magically turned $color{green}{sqrt{12x}}$ into $color{red}{12x}$ for no reason whatsoever.
And you incorrectly calculated $color{purple}{(2+2sqrt{3})(2-sqrt{3})} = color{orange}{4+(2cdot(-3))}$.
You should have done:
$frac{sqrt{12x}}{2+2sqrt{3}}=frac{sqrt{12x}}{2+2sqrt{3}}color{green}{frac{2 - 2sqrt{3}}{2 - 2sqrt{3}}}=frac{sqrt{12x}(2-2sqrt{3})}{color{purple}{(2+2sqrt{3})(2-2sqrt{3})}} = frac{...}{color{purple}{4-4*3}}=...$
edited Jan 6 at 19:17
answered Jan 6 at 19:06
fleabloodfleablood
69.4k22685
69.4k22685
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
add a comment |
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
$begingroup$
Thanks for the feedback and explanation. My first error re 12x was an outright error. I was not sure how to multiply out the denominator so thanks for clarifying how I do that here.
$endgroup$
– Doug Fir
Jan 6 at 19:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064264%2ffrac-sqrt12x22-sqrt3-simplifies-to-frac3-sqrtx-sqrt3x2-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Why do you get $sqrt {12x}(2-sqrt{3}) = 12x(2-sqrt 3)$? You arbitrarily just removed the radical sign over the $sqrt{12x}$. That was your error. Do it again without removing the radical sign.
$endgroup$
– fleablood
Jan 6 at 19:02
2
$begingroup$
Your second error is multiplying numerator and denominator by $2-sqrt 3$ instead of $2-2sqrt 3$.
$endgroup$
– TonyK
Jan 6 at 19:07
$begingroup$
And your third and fourth errors occur when you try to calculate $(2+2sqrt 3)(2-sqrt 3)$.
$endgroup$
– TonyK
Jan 6 at 19:08
$begingroup$
@TonyK good catch.
$endgroup$
– fleablood
Jan 6 at 19:08