Problem with deriving weights of a market portfolio in a mean variance framework
$begingroup$
I paste a part of a paper that formulate the MV investment problem.
I don't understand how equation 5 has been derived and, in particular, how the expected return on the zero beta portfolio comes up.
Many thanks in advance for a reply.
finance
$endgroup$
add a comment |
$begingroup$
I paste a part of a paper that formulate the MV investment problem.
I don't understand how equation 5 has been derived and, in particular, how the expected return on the zero beta portfolio comes up.
Many thanks in advance for a reply.
finance
$endgroup$
add a comment |
$begingroup$
I paste a part of a paper that formulate the MV investment problem.
I don't understand how equation 5 has been derived and, in particular, how the expected return on the zero beta portfolio comes up.
Many thanks in advance for a reply.
finance
$endgroup$
I paste a part of a paper that formulate the MV investment problem.
I don't understand how equation 5 has been derived and, in particular, how the expected return on the zero beta portfolio comes up.
Many thanks in advance for a reply.
finance
finance
asked Jan 5 at 0:16
user279687user279687
112
112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
From (3)
$$
pmb Sigmapmb x+lambdapmb iota=spmb muquadLongrightarrowquad pmb x=spmb Sigma^{-1}pmb mu-lambdapmb Sigma^{-1}pmb iotatag a
$$
Substituting in (4)
$$
pmb iota'pmb x=1 quadLongrightarrowquadpmb iota' pmb x=sunderbrace{pmb iota'pmb Sigma^{-1}pmb mu}_a-lambdaunderbrace{pmb iota'pmb Sigma^{-1}pmb iota}_c=sa-lambda c=1tag b
$$
From (b) we have
$$
sa-lambda c=sleft(a-frac{lambda}{s}cright)=sleft(a-bar r_zcright)=1quadLongrightarrowquad s=frac{1}{a-bar r_zc}tag c
$$
where $frac{lambda}{s}=bar r_z$. And then substituting (c) in (a) we have
$$
pmb x_m=sleft(pmb Sigma^{-1}pmb mu-frac{lambda}{s}pmb Sigma^{-1}pmb iotaright)=frac{1}{a-bar r_zc}left(pmb Sigma^{-1}pmb mu-bar r_zpmb Sigma^{-1}pmb iotaright)tag 5
$$
$endgroup$
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062271%2fproblem-with-deriving-weights-of-a-market-portfolio-in-a-mean-variance-framework%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From (3)
$$
pmb Sigmapmb x+lambdapmb iota=spmb muquadLongrightarrowquad pmb x=spmb Sigma^{-1}pmb mu-lambdapmb Sigma^{-1}pmb iotatag a
$$
Substituting in (4)
$$
pmb iota'pmb x=1 quadLongrightarrowquadpmb iota' pmb x=sunderbrace{pmb iota'pmb Sigma^{-1}pmb mu}_a-lambdaunderbrace{pmb iota'pmb Sigma^{-1}pmb iota}_c=sa-lambda c=1tag b
$$
From (b) we have
$$
sa-lambda c=sleft(a-frac{lambda}{s}cright)=sleft(a-bar r_zcright)=1quadLongrightarrowquad s=frac{1}{a-bar r_zc}tag c
$$
where $frac{lambda}{s}=bar r_z$. And then substituting (c) in (a) we have
$$
pmb x_m=sleft(pmb Sigma^{-1}pmb mu-frac{lambda}{s}pmb Sigma^{-1}pmb iotaright)=frac{1}{a-bar r_zc}left(pmb Sigma^{-1}pmb mu-bar r_zpmb Sigma^{-1}pmb iotaright)tag 5
$$
$endgroup$
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
add a comment |
$begingroup$
From (3)
$$
pmb Sigmapmb x+lambdapmb iota=spmb muquadLongrightarrowquad pmb x=spmb Sigma^{-1}pmb mu-lambdapmb Sigma^{-1}pmb iotatag a
$$
Substituting in (4)
$$
pmb iota'pmb x=1 quadLongrightarrowquadpmb iota' pmb x=sunderbrace{pmb iota'pmb Sigma^{-1}pmb mu}_a-lambdaunderbrace{pmb iota'pmb Sigma^{-1}pmb iota}_c=sa-lambda c=1tag b
$$
From (b) we have
$$
sa-lambda c=sleft(a-frac{lambda}{s}cright)=sleft(a-bar r_zcright)=1quadLongrightarrowquad s=frac{1}{a-bar r_zc}tag c
$$
where $frac{lambda}{s}=bar r_z$. And then substituting (c) in (a) we have
$$
pmb x_m=sleft(pmb Sigma^{-1}pmb mu-frac{lambda}{s}pmb Sigma^{-1}pmb iotaright)=frac{1}{a-bar r_zc}left(pmb Sigma^{-1}pmb mu-bar r_zpmb Sigma^{-1}pmb iotaright)tag 5
$$
$endgroup$
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
add a comment |
$begingroup$
From (3)
$$
pmb Sigmapmb x+lambdapmb iota=spmb muquadLongrightarrowquad pmb x=spmb Sigma^{-1}pmb mu-lambdapmb Sigma^{-1}pmb iotatag a
$$
Substituting in (4)
$$
pmb iota'pmb x=1 quadLongrightarrowquadpmb iota' pmb x=sunderbrace{pmb iota'pmb Sigma^{-1}pmb mu}_a-lambdaunderbrace{pmb iota'pmb Sigma^{-1}pmb iota}_c=sa-lambda c=1tag b
$$
From (b) we have
$$
sa-lambda c=sleft(a-frac{lambda}{s}cright)=sleft(a-bar r_zcright)=1quadLongrightarrowquad s=frac{1}{a-bar r_zc}tag c
$$
where $frac{lambda}{s}=bar r_z$. And then substituting (c) in (a) we have
$$
pmb x_m=sleft(pmb Sigma^{-1}pmb mu-frac{lambda}{s}pmb Sigma^{-1}pmb iotaright)=frac{1}{a-bar r_zc}left(pmb Sigma^{-1}pmb mu-bar r_zpmb Sigma^{-1}pmb iotaright)tag 5
$$
$endgroup$
From (3)
$$
pmb Sigmapmb x+lambdapmb iota=spmb muquadLongrightarrowquad pmb x=spmb Sigma^{-1}pmb mu-lambdapmb Sigma^{-1}pmb iotatag a
$$
Substituting in (4)
$$
pmb iota'pmb x=1 quadLongrightarrowquadpmb iota' pmb x=sunderbrace{pmb iota'pmb Sigma^{-1}pmb mu}_a-lambdaunderbrace{pmb iota'pmb Sigma^{-1}pmb iota}_c=sa-lambda c=1tag b
$$
From (b) we have
$$
sa-lambda c=sleft(a-frac{lambda}{s}cright)=sleft(a-bar r_zcright)=1quadLongrightarrowquad s=frac{1}{a-bar r_zc}tag c
$$
where $frac{lambda}{s}=bar r_z$. And then substituting (c) in (a) we have
$$
pmb x_m=sleft(pmb Sigma^{-1}pmb mu-frac{lambda}{s}pmb Sigma^{-1}pmb iotaright)=frac{1}{a-bar r_zc}left(pmb Sigma^{-1}pmb mu-bar r_zpmb Sigma^{-1}pmb iotaright)tag 5
$$
answered Jan 5 at 22:34
alexjoalexjo
12.3k1430
12.3k1430
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
add a comment |
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
$begingroup$
First of all many thanks for your reply. Would you be so kind to give me an hint to derive also equation 6?
$endgroup$
– user279687
Jan 9 at 23:15
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062271%2fproblem-with-deriving-weights-of-a-market-portfolio-in-a-mean-variance-framework%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown