Rewriting an integral of an absolutely continuous function
$begingroup$
Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.
Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.
What I have so far:
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.
$=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)
$=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$
Could someone please explain how the bounds change? Thanks!
measure-theory lebesgue-integral lebesgue-measure absolute-continuity
$endgroup$
add a comment |
$begingroup$
Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.
Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.
What I have so far:
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.
$=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)
$=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$
Could someone please explain how the bounds change? Thanks!
measure-theory lebesgue-integral lebesgue-measure absolute-continuity
$endgroup$
add a comment |
$begingroup$
Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.
Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.
What I have so far:
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.
$=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)
$=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$
Could someone please explain how the bounds change? Thanks!
measure-theory lebesgue-integral lebesgue-measure absolute-continuity
$endgroup$
Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.
Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.
What I have so far:
$int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.
$=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)
$=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$
Could someone please explain how the bounds change? Thanks!
measure-theory lebesgue-integral lebesgue-measure absolute-continuity
measure-theory lebesgue-integral lebesgue-measure absolute-continuity
asked Jan 6 at 20:24
Math LadyMath Lady
1196
1196
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We can write
$$begin{eqnarray}
int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
&=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
&=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
&=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
&=&int_beta^infty phi'(t)lambda(t)dt,
end{eqnarray}$$ by Tonelli's theorem.
$endgroup$
add a comment |
$begingroup$
$f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064357%2frewriting-an-integral-of-an-absolutely-continuous-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can write
$$begin{eqnarray}
int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
&=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
&=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
&=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
&=&int_beta^infty phi'(t)lambda(t)dt,
end{eqnarray}$$ by Tonelli's theorem.
$endgroup$
add a comment |
$begingroup$
We can write
$$begin{eqnarray}
int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
&=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
&=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
&=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
&=&int_beta^infty phi'(t)lambda(t)dt,
end{eqnarray}$$ by Tonelli's theorem.
$endgroup$
add a comment |
$begingroup$
We can write
$$begin{eqnarray}
int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
&=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
&=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
&=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
&=&int_beta^infty phi'(t)lambda(t)dt,
end{eqnarray}$$ by Tonelli's theorem.
$endgroup$
We can write
$$begin{eqnarray}
int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
&=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
&=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
&=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
&=&int_beta^infty phi'(t)lambda(t)dt,
end{eqnarray}$$ by Tonelli's theorem.
answered Jan 6 at 21:04
SongSong
10.4k627
10.4k627
add a comment |
add a comment |
$begingroup$
$f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.
$endgroup$
add a comment |
$begingroup$
$f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.
$endgroup$
add a comment |
$begingroup$
$f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.
$endgroup$
$f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.
answered Jan 6 at 23:52


Kavi Rama MurthyKavi Rama Murthy
56k42158
56k42158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064357%2frewriting-an-integral-of-an-absolutely-continuous-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown