Rewriting an integral of an absolutely continuous function












2












$begingroup$


Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.



Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,



$int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.



What I have so far:



$int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.



$=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)



$=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$



Could someone please explain how the bounds change? Thanks!










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.



    Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,



    $int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.



    What I have so far:



    $int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.



    $=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)



    $=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$



    Could someone please explain how the bounds change? Thanks!










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.



      Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,



      $int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.



      What I have so far:



      $int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.



      $=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)



      $=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$



      Could someone please explain how the bounds change? Thanks!










      share|cite|improve this question









      $endgroup$




      Let $(X,M, mu)$ be a $sigma$-finite measure space and $f: X rightarrow [0, infty)$ be measurable. For each $alpha ge 0$ Define $E_alpha = { x in X : f(x) > alpha }$ and $lambda(alpha) = mu(E_alpha)$.



      Suppose that $phi : [0, infty) rightarrow [0,infty)$ is an increasing function which is absolutely continuous on [0,T] for every T $in (0, infty)$. Prove that for each $beta ge 0$,



      $int_{E_beta}(phi(f(x))-phi(beta))dmu(x) = int_beta^infty phi '(alpha)lambda(alpha) dalpha$.



      What I have so far:



      $int_{E_beta}(phi(f(x))-phi(beta))dmu(x)=int_{E_beta} phi(beta)-int_beta^{f(x)} phi ' (t) dt-phi(beta)dmu(x)$ because $phi$ is absolutely continuous.



      $=-int_{E_beta}int_beta^{f(x)}phi ' (t)dt dmu(x) = int_beta^inftyint_{E_t} phi ' (t) dmu dt$ (I'm not really sure why this is true?? Fubini-Tonelli allows us to switch the integrals, but I don't understand why the bounds change)



      $=int_beta^inftyphi ' (t) mu(E_t)dt=int_beta^infty phi '(t)lambda(t)dt$



      Could someone please explain how the bounds change? Thanks!







      measure-theory lebesgue-integral lebesgue-measure absolute-continuity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 6 at 20:24









      Math LadyMath Lady

      1196




      1196






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          We can write
          $$begin{eqnarray}
          int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
          &=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
          &=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
          &=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
          &=&int_beta^infty phi'(t)lambda(t)dt,
          end{eqnarray}$$
          by Tonelli's theorem.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            $f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064357%2frewriting-an-integral-of-an-absolutely-continuous-function%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              We can write
              $$begin{eqnarray}
              int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
              &=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
              &=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
              &=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
              &=&int_beta^infty phi'(t)lambda(t)dt,
              end{eqnarray}$$
              by Tonelli's theorem.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                We can write
                $$begin{eqnarray}
                int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
                &=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
                &=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
                &=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
                &=&int_beta^infty phi'(t)lambda(t)dt,
                end{eqnarray}$$
                by Tonelli's theorem.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  We can write
                  $$begin{eqnarray}
                  int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
                  &=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
                  &=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
                  &=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
                  &=&int_beta^infty phi'(t)lambda(t)dt,
                  end{eqnarray}$$
                  by Tonelli's theorem.






                  share|cite|improve this answer









                  $endgroup$



                  We can write
                  $$begin{eqnarray}
                  int_{E_beta}(phi(f(x))-phi(beta))dmu(x) &=&int_{E_beta}left(int_beta^{f(x)}phi'(t)dtright)dmu(x) \
                  &=&int_{E_beta}int_{beta<t<f(x)}phi'(t)dtdmu(x) \
                  &=&int_{t>beta}int_{E_betabigcap {t<f(x)}}phi'(t)dmu(x)dt\
                  &=&int_{t>beta}left(int_{E_t} 1dmu(x)right)phi'(t)dt\
                  &=&int_beta^infty phi'(t)lambda(t)dt,
                  end{eqnarray}$$
                  by Tonelli's theorem.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 6 at 21:04









                  SongSong

                  10.4k627




                  10.4k627























                      0












                      $begingroup$

                      $f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        $f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          $f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.






                          share|cite|improve this answer









                          $endgroup$



                          $f(x) >beta$ and $beta <t<f(x)$ iff $beta <t<infty$ and $f(x) >t$. Hence $xin E_{beta}$ and $beta <t <f(x)$ iff $t >beta$ and $x in E_t$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 6 at 23:52









                          Kavi Rama MurthyKavi Rama Murthy

                          56k42158




                          56k42158






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064357%2frewriting-an-integral-of-an-absolutely-continuous-function%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith