Associated graded ring




In mathematics, the associated graded ring of a ring R with respect to a proper ideal I is the graded ring:



grI⁡R=⊕n=0∞In/In+1{displaystyle operatorname {gr} _{I}R=oplus _{n=0}^{infty }I^{n}/I^{n+1}}operatorname {gr}_{I}R=oplus _{{n=0}}^{infty }I^{n}/I^{{n+1}}.

Similarly, if M is a left R-module, then the associated graded module is the graded module over grI⁡R{displaystyle operatorname {gr} _{I}R}operatorname {gr}_{I}R:



grI⁡M=⊕0∞InM/In+1M{displaystyle operatorname {gr} _{I}M=oplus _{0}^{infty }I^{n}M/I^{n+1}M}operatorname {gr}_{I}M=oplus _{0}^{infty }I^{n}M/I^{{n+1}}M.



Contents






  • 1 Basic definitions and properties


  • 2 Examples


  • 3 Generalization to multiplicative filtrations


  • 4 See also


  • 5 References





Basic definitions and properties


For a ring R and ideal I, multiplication in grI⁡R{displaystyle operatorname {gr} _{I}R}operatorname {gr}_{I}R is defined as follows: First, consider homogeneous elements a∈Ii/Ii+1{displaystyle ain I^{i}/I^{i+1}}ain I^{i}/I^{{i+1}} and b∈Ij/Ij+1{displaystyle bin I^{j}/I^{j+1}}bin I^{j}/I^{{j+1}} and suppose a′∈Ii{displaystyle a'in I^{i}}a'in I^{i} is a representative of a and b′∈Ij{displaystyle b'in I^{j}}b'in I^{j} is a representative of b. Then define ab{displaystyle ab}ab to be the equivalence class of a′b′{displaystyle a'b'}a'b' in Ii+j/Ii+j+1{displaystyle I^{i+j}/I^{i+j+1}}I^{{i+j}}/I^{{i+j+1}}. Note that this is well-defined modulo Ii+j+1{displaystyle I^{i+j+1}}I^{{i+j+1}}. Multiplication of inhomogeneous elements is defined by using the distributive property.


A ring or module may be related to its associated graded ring or module through the initial form map. Let M be an R-module and I an ideal of R. Given f∈M{displaystyle fin M}fin M, the initial form of f in grI⁡M{displaystyle operatorname {gr} _{I}M}operatorname {gr}_{I}M, written in(f){displaystyle mathrm {in} (f)}{mathrm  {in}}(f), is the equivalence class of f in ImM/Im+1M{displaystyle I^{m}M/I^{m+1}M}I^{m}M/I^{{m+1}}M where m is the maximum integer such that f∈ImM{displaystyle fin I^{m}M}fin I^{m}M. If f∈ImM{displaystyle fin I^{m}M}fin I^{m}M for every m, then set in(f)=0{displaystyle mathrm {in} (f)=0}{mathrm  {in}}(f)=0. The initial form map is only a map of sets and generally not a homomorphism. For a submodule N⊂M{displaystyle Nsubset M}Nsubset M, in(N){displaystyle mathrm {in} (N)}{mathrm  {in}}(N) is defined to be the submodule of grI⁡M{displaystyle operatorname {gr} _{I}M}operatorname {gr}_{I}M generated by {in(f)|f∈N}{displaystyle {mathrm {in} (f)|fin N}}{{mathrm  {in}}(f)|fin N}. This may not be the same as the submodule of grI⁡M{displaystyle operatorname {gr} _{I}M}operatorname {gr}_{I}M generated by the only initial forms of the generators of N.


A ring inherits some "good" properties from its associated graded ring. For example, if R is a noetherian local ring, and grI⁡R{displaystyle operatorname {gr} _{I}R}operatorname {gr}_{I}R is an integral domain, then R is itself an integral domain.[1]



Examples


Let U be the enveloping algebra of a Lie algebra g{displaystyle {mathfrak {g}}}{mathfrak {g}} over a field k; it is filtered by degree. The Poincaré–Birkhoff–Witt theorem implies that gr⁡U{displaystyle operatorname {gr} U}operatorname {gr}U is a polynomial ring; in fact, it is the coordinate ring k[g∗]{displaystyle k[{mathfrak {g}}^{*}]}k[{mathfrak  {g}}^{*}].


The associated graded algebra of a Clifford algebra is an exterior algebra; i.e., a Clifford algebra degenerates to an exterior algebra.



Generalization to multiplicative filtrations


The associated graded can also be defined more generally for multiplicative descending filtrations of R (see also filtered ring.) Let F be a descending chain of ideals of the form


R=I0⊃I1⊃I2⊃{displaystyle R=I_{0}supset I_{1}supset I_{2}supset dotsb }R=I_{0}supset I_{1}supset I_{2}supset dotsb

such that IjIk⊂Ij+k{displaystyle I_{j}I_{k}subset I_{j+k}}I_{j}I_{k}subset I_{{j+k}}. The graded ring associated with this filtration is grF⁡R=⊕n=0∞In/In+1{displaystyle operatorname {gr} _{F}R=oplus _{n=0}^{infty }I_{n}/I_{n+1}}operatorname {gr}_{F}R=oplus _{{n=0}}^{infty }I_{n}/I_{{n+1}}. Multiplication and the initial form map are defined as above.



See also



  • Graded (mathematics)

  • Rees algebra



References





  1. ^ Eisenbud, Corollary 5.5





  • Eisenbud, David (1995). Commutative Algebra. Graduate Texts in Mathematics. 150. New York: Springer-Verlag. doi:10.1007/978-1-4612-5350-1. ISBN 0-387-94268-8. MR 1322960..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  • Matsumura, Hideyuki (1989). Commutative ring theory. Cambridge Studies in Advanced Mathematics. 8. Translated from the Japanese by M. Reid (Second ed.). Cambridge: Cambridge University Press. ISBN 0-521-36764-6. MR 1011461.




Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]