Proving $K= {x in mathbb R^n: exists t>0 (t^{-1}, text { for } x in A},$ given convex set $Asubset mathbb...












1












$begingroup$


I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$



I want to show, that $K$ is convex.



My idea:



$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.



Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.



How can I argue now, that this convex combination is in $K$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What does ($t^{-1}$ for $xin A$)?
    $endgroup$
    – Mostafa Ayaz
    Jan 18 at 16:10












  • $begingroup$
    It should be $..exists t>0 : t^{-1} cdot x in A$
    $endgroup$
    – SvenMath
    Jan 18 at 16:12










  • $begingroup$
    @SvenMath so you should have $ty$ and $tz$ then?
    $endgroup$
    – LinAlg
    Jan 18 at 16:16
















1












$begingroup$


I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$



I want to show, that $K$ is convex.



My idea:



$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.



Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.



How can I argue now, that this convex combination is in $K$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What does ($t^{-1}$ for $xin A$)?
    $endgroup$
    – Mostafa Ayaz
    Jan 18 at 16:10












  • $begingroup$
    It should be $..exists t>0 : t^{-1} cdot x in A$
    $endgroup$
    – SvenMath
    Jan 18 at 16:12










  • $begingroup$
    @SvenMath so you should have $ty$ and $tz$ then?
    $endgroup$
    – LinAlg
    Jan 18 at 16:16














1












1








1





$begingroup$


I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$



I want to show, that $K$ is convex.



My idea:



$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.



Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.



How can I argue now, that this convex combination is in $K$?










share|cite|improve this question











$endgroup$




I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$



I want to show, that $K$ is convex.



My idea:



$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.



Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.



How can I argue now, that this convex combination is in $K$?







convex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 18:18









Andrés E. Caicedo

65.5k8159250




65.5k8159250










asked Jan 18 at 15:52









SvenMathSvenMath

377




377












  • $begingroup$
    What does ($t^{-1}$ for $xin A$)?
    $endgroup$
    – Mostafa Ayaz
    Jan 18 at 16:10












  • $begingroup$
    It should be $..exists t>0 : t^{-1} cdot x in A$
    $endgroup$
    – SvenMath
    Jan 18 at 16:12










  • $begingroup$
    @SvenMath so you should have $ty$ and $tz$ then?
    $endgroup$
    – LinAlg
    Jan 18 at 16:16


















  • $begingroup$
    What does ($t^{-1}$ for $xin A$)?
    $endgroup$
    – Mostafa Ayaz
    Jan 18 at 16:10












  • $begingroup$
    It should be $..exists t>0 : t^{-1} cdot x in A$
    $endgroup$
    – SvenMath
    Jan 18 at 16:12










  • $begingroup$
    @SvenMath so you should have $ty$ and $tz$ then?
    $endgroup$
    – LinAlg
    Jan 18 at 16:16
















$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10






$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10














$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12




$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12












$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16




$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16










1 Answer
1






active

oldest

votes


















2












$begingroup$

The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.



All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.



With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.



For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.



Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$



is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your proof. I need some time to unterstand what you have done.
    $endgroup$
    – SvenMath
    Jan 18 at 16:37










  • $begingroup$
    You are welcome. I will edit my answer if required.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:38










  • $begingroup$
    No you musn't do that:)
    $endgroup$
    – SvenMath
    Jan 18 at 16:39










  • $begingroup$
    Ok , I will not do so.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:40










  • $begingroup$
    Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
    $endgroup$
    – SvenMath
    Jan 18 at 16:48













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078417%2fproving-k-x-in-mathbb-rn-exists-t0-t-1-text-for-x-in-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.



All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.



With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.



For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.



Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$



is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your proof. I need some time to unterstand what you have done.
    $endgroup$
    – SvenMath
    Jan 18 at 16:37










  • $begingroup$
    You are welcome. I will edit my answer if required.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:38










  • $begingroup$
    No you musn't do that:)
    $endgroup$
    – SvenMath
    Jan 18 at 16:39










  • $begingroup$
    Ok , I will not do so.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:40










  • $begingroup$
    Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
    $endgroup$
    – SvenMath
    Jan 18 at 16:48


















2












$begingroup$

The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.



All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.



With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.



For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.



Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$



is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your proof. I need some time to unterstand what you have done.
    $endgroup$
    – SvenMath
    Jan 18 at 16:37










  • $begingroup$
    You are welcome. I will edit my answer if required.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:38










  • $begingroup$
    No you musn't do that:)
    $endgroup$
    – SvenMath
    Jan 18 at 16:39










  • $begingroup$
    Ok , I will not do so.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:40










  • $begingroup$
    Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
    $endgroup$
    – SvenMath
    Jan 18 at 16:48
















2












2








2





$begingroup$

The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.



All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.



With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.



For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.



Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$



is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.






share|cite|improve this answer









$endgroup$



The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.



All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.



With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.



For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.



Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$



is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 18 at 16:19









астон вілла олоф мэллбэргастон вілла олоф мэллбэрг

38.9k33477




38.9k33477












  • $begingroup$
    Thank you for your proof. I need some time to unterstand what you have done.
    $endgroup$
    – SvenMath
    Jan 18 at 16:37










  • $begingroup$
    You are welcome. I will edit my answer if required.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:38










  • $begingroup$
    No you musn't do that:)
    $endgroup$
    – SvenMath
    Jan 18 at 16:39










  • $begingroup$
    Ok , I will not do so.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:40










  • $begingroup$
    Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
    $endgroup$
    – SvenMath
    Jan 18 at 16:48




















  • $begingroup$
    Thank you for your proof. I need some time to unterstand what you have done.
    $endgroup$
    – SvenMath
    Jan 18 at 16:37










  • $begingroup$
    You are welcome. I will edit my answer if required.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:38










  • $begingroup$
    No you musn't do that:)
    $endgroup$
    – SvenMath
    Jan 18 at 16:39










  • $begingroup$
    Ok , I will not do so.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 18 at 16:40










  • $begingroup$
    Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
    $endgroup$
    – SvenMath
    Jan 18 at 16:48


















$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37




$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37












$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38




$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38












$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39




$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39












$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40




$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40












$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48






$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078417%2fproving-k-x-in-mathbb-rn-exists-t0-t-1-text-for-x-in-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]