Proving $K= {x in mathbb R^n: exists t>0 (t^{-1}, text { for } x in A},$ given convex set $Asubset mathbb...
$begingroup$
I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$
I want to show, that $K$ is convex.
My idea:
$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.
Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.
How can I argue now, that this convex combination is in $K$?
convex-analysis
$endgroup$
add a comment |
$begingroup$
I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$
I want to show, that $K$ is convex.
My idea:
$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.
Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.
How can I argue now, that this convex combination is in $K$?
convex-analysis
$endgroup$
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16
add a comment |
$begingroup$
I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$
I want to show, that $K$ is convex.
My idea:
$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.
Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.
How can I argue now, that this convex combination is in $K$?
convex-analysis
$endgroup$
I have a convex set $ A subset mathbb{R^n}$ and $K= {x in mathbb {R^n}mid exists t>0( t^{-1} text { for } x in A)}.$
I want to show, that $K$ is convex.
My idea:
$y in K Rightarrow exists t>0: t^{-1} y in A$ and $z in K Rightarrow exists t>0: t'^{-1} z in A$.
Thus $A$ convex, there is a $t''>0: t''^{-1}( lambda t^{-1} y + (1- lambda) t'^{-1} z) in A $ with $ lambda in [0,1]$.
How can I argue now, that this convex combination is in $K$?
convex-analysis
convex-analysis
edited Jan 18 at 18:18
Andrés E. Caicedo
65.5k8159250
65.5k8159250
asked Jan 18 at 15:52
SvenMathSvenMath
377
377
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16
add a comment |
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.
All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.
With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.
For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.
Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$
is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.
$endgroup$
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
|
show 5 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078417%2fproving-k-x-in-mathbb-rn-exists-t0-t-1-text-for-x-in-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.
All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.
With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.
For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.
Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$
is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.
$endgroup$
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
|
show 5 more comments
$begingroup$
The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.
All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.
With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.
For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.
Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$
is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.
$endgroup$
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
|
show 5 more comments
$begingroup$
The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.
All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.
With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.
For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.
Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$
is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.
$endgroup$
The best way to do things, is to note that if $a in A$, then every element of the form $at, t > 0$ belongs in $K$, since $(at)t^{-1} = a in A$. Conversely, if $l in K$, then for some $t > 0$ we have $lt^{-1} = b in A$, or that $l=tb$ for some $b in A$ and $t > 0$.
All this tells us that $K = {at : a in A, t > 0}$. If $A$ is convex, we claim this is convex.
With this description, indeed if $at in K$ and $bt' in K$, then if $lambda in [0,1]$ we want to show that $l = atlambda + bt'(1-lambda) in K$.
For this, note that $t lambda geq 0$ and $t'(1-lambda) geq 0$, with $k=tlambda + t'(1-lambda) > 0$, since one of $lambda,1-lambda$ is strictly positive.
Then, $$l = frac{l}{k}k = kleft(afrac{tlambda}{k} + b frac{t'(1-lambda)}{k}right)$$
is the product of $k>0$ and a convex combination of $a$ and $b$ which lies inside $A$ since it is convex. By definition of $K$, we get that $l in K$, or that $K$ is convex.
answered Jan 18 at 16:19
астон вілла олоф мэллбэргастон вілла олоф мэллбэрг
38.9k33477
38.9k33477
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
|
show 5 more comments
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
Thank you for your proof. I need some time to unterstand what you have done.
$endgroup$
– SvenMath
Jan 18 at 16:37
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
You are welcome. I will edit my answer if required.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:38
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
No you musn't do that:)
$endgroup$
– SvenMath
Jan 18 at 16:39
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Ok , I will not do so.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 18 at 16:40
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
$begingroup$
Why is the last term a convex combination of a and b. Do you consider $ frac{ t lambda}{k} in [0,1] and frac{ t'(1- lambda)}{k} in [0,1] $
$endgroup$
– SvenMath
Jan 18 at 16:48
|
show 5 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078417%2fproving-k-x-in-mathbb-rn-exists-t0-t-1-text-for-x-in-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What does ($t^{-1}$ for $xin A$)?
$endgroup$
– Mostafa Ayaz
Jan 18 at 16:10
$begingroup$
It should be $..exists t>0 : t^{-1} cdot x in A$
$endgroup$
– SvenMath
Jan 18 at 16:12
$begingroup$
@SvenMath so you should have $ty$ and $tz$ then?
$endgroup$
– LinAlg
Jan 18 at 16:16