Young's Inequality for Convolutions; when $r = infty$
I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:
Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.
First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.
In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.
However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.
Any help would be appreciated, thanks!
real-analysis convolution
add a comment |
I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:
Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.
First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.
In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.
However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.
Any help would be appreciated, thanks!
real-analysis convolution
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08
add a comment |
I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:
Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.
First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.
In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.
However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.
Any help would be appreciated, thanks!
real-analysis convolution
I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:
Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.
First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.
In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.
However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.
Any help would be appreciated, thanks!
real-analysis convolution
real-analysis convolution
asked Nov 20 '18 at 16:03
김현빈
525
525
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08
add a comment |
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08
add a comment |
1 Answer
1
active
oldest
votes
It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006502%2fyoungs-inequality-for-convolutions-when-r-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$
add a comment |
It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$
add a comment |
It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$
It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$
answered Nov 20 '18 at 16:09
Umberto P.
38.5k13064
38.5k13064
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006502%2fyoungs-inequality-for-convolutions-when-r-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08