Young's Inequality for Convolutions; when $r = infty$












1














I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:



Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.



First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.



In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.



However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.



Any help would be appreciated, thanks!










share|cite|improve this question






















  • This is just the standard Holder inequaity
    – Federico
    Nov 20 '18 at 16:08
















1














I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:



Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.



First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.



In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.



However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.



Any help would be appreciated, thanks!










share|cite|improve this question






















  • This is just the standard Holder inequaity
    – Federico
    Nov 20 '18 at 16:08














1












1








1







I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:



Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.



First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.



In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.



However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.



Any help would be appreciated, thanks!










share|cite|improve this question













I've been trying to prove what seems to be a little generalized version of the Young's Inequality for Convolutions. Here's the statement of the Theorem:



Let $1leq p, q leq infty$, $frac{1}{p}+frac{1}{q}geq 1$, and $frac{1}{r}=frac{1}{p}+frac{1}{q}-1$. If $f in L^{p}, g in L^{q}$, then $fast g in L^{r}$ and $||fast g||_{r} leq ||f||_{p}||g||_{q}$.



First we may assume that $f,g$ are non-negative, for we can replace $f,g$ with $|f|,|g|$ if necessary.



In the case where $p,q,r leq infty$, I used the Generalized Hölder's Inequality for three functions with $frac{1}{r}+frac{1}{p_1}+frac{1}{p_2} = 1$, where $frac{1}{p_1}=frac{1}{p}-frac{1}{r}$, and $frac{1}{p_2}=frac{1}{q}-frac{1}{r}$, and got my desired result.



However, I'm stuck trying to prove the case when $r=infty$; that is when $frac{1}{p}+frac{1}{q}=1$, $||fast g||_{infty} leq ||f||_{p}||g||_{q}$ . My guess is that I need to consider the case when either $p$ or $q$ in infinite (so that the other equals 1), and when neither are infinite.



Any help would be appreciated, thanks!







real-analysis convolution






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 20 '18 at 16:03









김현빈

525




525












  • This is just the standard Holder inequaity
    – Federico
    Nov 20 '18 at 16:08


















  • This is just the standard Holder inequaity
    – Federico
    Nov 20 '18 at 16:08
















This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08




This is just the standard Holder inequaity
– Federico
Nov 20 '18 at 16:08










1 Answer
1






active

oldest

votes


















0














It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
$$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006502%2fyoungs-inequality-for-convolutions-when-r-infty%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
    $$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$






    share|cite|improve this answer


























      0














      It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
      $$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$






      share|cite|improve this answer
























        0












        0








        0






        It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
        $$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$






        share|cite|improve this answer












        It's really just Hölder's inequality. Fix $x$ and write $f_x(y) = f(x-y)$. The translation invariance of the integral gives you $|f_x|_p = |f|_p$ for all $1 le p le infty$ so that
        $$|f ast g(x)| le int |f(x-y)| |g(y)| , dy le |f_x|_p |g|_q = |f|_p |g|_q.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 20 '18 at 16:09









        Umberto P.

        38.5k13064




        38.5k13064






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006502%2fyoungs-inequality-for-convolutions-when-r-infty%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]