Auslander–Buchsbaum formula





In commutative algebra, the Auslander–Buchsbaum formula, introduced by Auslander and Buchsbaum (1957, theorem 3.7), states that if R is a commutative Noetherian local ring and M is a non-zero finitely generated R-module of finite projective dimension, then


pdR(M)+depth(M)=depth(R).{displaystyle mathrm {pd} _{R}(M)+mathrm {depth} (M)=mathrm {depth} (R).}{mathrm  {pd}}_{R}(M)+{mathrm  {depth}}(M)={mathrm  {depth}}(R).

Here pd stands for the projective dimension of a module, and depth for the depth of a module.



Applications


The Auslander–Buchsbaum formula implies that a Noetherian local ring is regular if, and only if, it has finite global dimension. In turn this implies that the localization of a regular local ring is regular.


If A is a local finitely generated R-algebra (over a regular local ring R), then the Auslander–Buchsbaum formula implies that A is Cohen–Macaulay if, and only if, pdRA = codimRA.



References




  • Auslander, Maurice; Buchsbaum, David A. (1957), "Homological dimension in local rings", Transactions of the American Mathematical Society, 85: 390–405, doi:10.2307/1992937, ISSN 0002-9947, JSTOR 1992937, MR 0086822.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}

  • Chapter 19 of Eisenbud, David (1995), Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94269-8, MR 1322960








Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]