概型
数学における概型あるいはスキーム (英: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。
スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。
目次
1 定義
1.1 環のスペクトル
1.2 アフィンスキーム
1.3 スキーム
2 スキームについての諸概念
3 古典的な代数幾何学との対応
4 歴史と動機
5 代数幾何学の対象の現代的定義
6 スキームの圏
7 OX 加群
8 関連項目
9 参考文献
定義
環のスペクトル
可換環 A に対して、 A の素イデアルの全体の集合 Spec(A) は A のスペクトルとよばれる。A の部分集合 M に対し
- V(M)={p∈Spec(A):M⊂p}{displaystyle V(M)={{mathfrak {p}}in operatorname {Spec} (A):Msubset {mathfrak {p}}}}
とおくと、{V(M) : M ⊂ A } は Spec(A) 上の閉集合系の公理を満たす。これによって定まる位相はザリスキー位相とよばれる。A の元 f に対して
- D(f)={p∈Spec(A):f∉p}{displaystyle D(f)={{mathfrak {p}}in operatorname {Spec} (A):fnotin {mathfrak {p}}}}
とおくと、{D(f) : f ∈ A} は Spec(A) の開集合の生成基となる。fの形式的逆を付け加えて局所化した環 A[1/f] のスペクトルは D(f) と同相になる。
アフィンスキーム
環 A のスペクトル Spec(A) は以下のようにして局所環付き空間の構造を持ち、その構造も込めてアフィンスキームまたはアフィン概型とよばれる。Spec(A) の開集合 U に対し、
- SU=⋂p∈Upc{displaystyle S_{U}=bigcap _{{mathfrak {p}}in U}{mathfrak {p}}^{c}}
は A の空でない積閉集合である。開集合 U に対してSUに関するAの局所化 SU−1A を与える対応は Spec(A) 上の局所環の層になり、OSpec A と書かれる。この構造層OSpec A は、スペクトルの開集合の生成基 D(f) (f ∈ A) に対し A[1/f] を与える層として特徴づけられる。
A の素イデアル p に対して OSpec(A) の p における茎を考えることができるが、これはp における A の局所化 Ap と同型である。また、A の元 f に対して、環 OSpec(A)(D(f)) は A の f についての局所化 A[1/f] と同型になっている。
環の準同型 f: A → B が与えられたとき、局所環付き空間の射 Spec B → Spec A が次のようにして自然に定まる。底空間の間の連続写像は Spec B ∋ p → f−1p ∈ Spec Aによって与えられ、「構造層の間の射」 OA → f*OB は SU−1A → f(SU)−1B によって与えられる。
逆に、アフィン概型間の射 g: X → Y が与えられると、環の準同型 Γ(g): Γ(OY) = OY(Y) → Γ(OX) が導かれ、この対応 A → Spec(A) と X → Γ(OX) によって、環の圏と、アフィン概型の圏は圏同値となる。
スキーム
アフィンスキームの張り合わせとしてえられるような局所環付き空間は前スキームまたは概型(スキーム)とよばれる。グロタンディークのEGAやマンフォードの「Red Book」など初期の文献には概型/スキームという用語で前スキームのうちで特に点の分離性を満たすものをさしているものもある。
スキームについての諸概念
スキーム間の射の中で、位相空間に対応するものとして、分離射と固有射の二つがある。スキーム間の射については、構造層や加群の層を考える必要がある。スキームの内在的な幾何については因子の概念が重要な役割を果たす。スキームから射影空間への射では、可逆層やその大域切断で特徴付けられる。
古典的な代数幾何学との対応
古典的代数幾何学における主要な研究対象であった、多項式の零点集合として定義されるような図形(アフィン多様体)は次のようにして(アフィン)スキームの文脈に再現される。
例として複素二次元空間 C2 上で定義される
- f(x,y)=x2+y2−1{displaystyle f(x,y)=x^{2}+y^{2}-1}
という多項式関数の零点集合 S を考える。複素係数の2変数多項式環 C[x, y] は C2 上の多項式関数の代数系を表しており、この多項式環を f(x, y) で割ってできる剰余環 A = C[x, y]/(f) の元は C2 上の関数について S 上で区別できない差を無視したものと見なすことができる。したがって、この商環は S 上の関数全体の代数系をあらわすと考えられる。
一方で A の極大イデアルは f (x, y) = 0 の点と一対一に対応している。たとえば、上で定義した A の極大イデアル m = (x − 1, y) は S 上の点 (1, 0) という点に対応している。そこで A の極大イデアルの集合を Spm A と定義すれば、これを今まで我々が考えてきた S と同一視することができる。これが、古典的な意味での点集合としての代数多様体である。
しかし、数論への応用を視野に入れた圏論的な定式化のためには、既約部分多様体をも点と見なした方が都合が良いことが知られている。つまり、任意の環の準同型 B → C に対し必ずアフィンスキームの射 Spec C → Spec B が存在する一方で、Spm C と Spm B の間にはアプリオリな対応が存在しない。このように、スキーム論では多様体上の点は部分多様体と捉え、逆に(既約)部分多様体も点のようにみなされる。
また、各点 p における構造層の茎は p の近傍でのみ定義されているような正則関数を考えることに対応している。
アフィン多様体の張り合わせで得られる射影空間などがスキームとして表現される。
歴史と動機
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。 正確な語句に改訳できる方を求めています。 |
イタリア学派の代数幾何学は、代数多様体についてのステートメントを証明するときにはしばしば「生成点というようないくらか曖昧が概念を使った。「生成点で正しい」意味は少数の特別の点を除き全ての点で成り立つという意味である。1920年代のエミー・ネーターは最初にこの概念を評価する方法を示唆した。多様体の座標環から始めて(多様体上に定義された全ての多項式函数の環)、座標環の極大イデアルが、(適当な条件下で)多様体の点の座標に対応することとなり、非極大な素イデアルは様々な部分多様体の生成点に対応することとなることになる。従って、全ての素イデアルを取ることにより、通常の点と生成点の全体を得る。ネターはこのアプローチをこれ以上追及しなかった。
1930年代、ヴォルフガング・クルル (Wolfgang Krull) は見方を変えるような根底的な考え方を提出した。任意の可換環から始め、素イデアルの集合を考え、ザリスキー位相を導入することで素イデアルの集合を位相空間とし、これらの一般的な対象の代数幾何学を研究した。この一般性が持つ利点を見い出せないとして、クルルは研究を打ち切ってしまった。
アンドレ・ヴェイユ (André Weil) は、有限体上やそのほかの環上の代数幾何学に特に興味を持った。1940年代に彼は素イデアルによるアプローチへ戻り、基礎的な理由により彼の必要としたものは(射影空間以外の)抽象多様体であり、特にヤコビ多様体の代数的設定での存在であった。ヴェイユの主要な基本的な書籍(1946)では、生成点は普遍領域(universal domain)と呼ばれる非常に大きな代数的閉体の中に点を取ることで構成された。
1944年、オスカー・ザリスキー (Oscar Zariski) は、双有理幾何学の必要のために、抽象的ザリスキー・リーマン空間を代数多様体の函数体から定義した。この定義は、(ブローアップの下での)通常の多様体の帰納極限のように、構成はロケール理論 (locale theory) の類似で、点としては付値環を使った。
1950年代に、ジャン=ピエール・セール (Jean-Pierre Serre)、クロード・シュヴァレー (Claude Chevalley) や永田雅宜は、数論と代数幾何学に関連するヴェイユ予想に大きく動機付けられ、同じように点としての素イデアルというアプローチを追及した。ピエール・カルティエ(Pierre Cartier)に従うと、用語であるスキーム (scheme) は、シュヴァレーの1958年のセミナーで最初に使われ、そこでシュヴァレーはザリスキーのアイデアを追及し、アンドレ・マルティノー (André Martineau) がセールに当時の環のスペクトルへ移行しようと示唆した。
代数幾何学の対象の現代的定義
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。 正確な語句に改訳できる方を求めています。 |
アレクサンドル・グロタンディーク (Alexander Grothendieck) は、決定的な定義を提唱し、実験的示唆と部分的な発展の出発点をもたらした。彼は可換環のスペクトルを素イデアルがザリスキー位相に関してなす空間として定義したが、このスペクトルに環の層を付け加えた組をスキームとしたのである。全てのザリスキー開集合へ可換環を対応させ、その集合の上に定義された「多項式函数」の環を考えた。これらの対象は「アフィンスキーム」であり、次に一般的なスキームはいくつかのアフィンスキームを互いに「はり合わせる」ことにより得られる。一般的な多様体はアフィン多様体を貼り合わせることにより得られるという事実の類似である。
スキームの概念の一般性は、最初は批判された。幾何学的な解釈を直接持たないので除かれたスキームもあり、これらがスキームの概念の把握を困難にしていた。しかしながら、任意のスキームを考えるとスキームの圏はより良い振る舞いをもつようになる。さらに、例えばモジュライ空間のように、自然な見方、考え方が「非古典的」なスキームへと導いていった。多様体ではないこれらスキーム(単純に多様体から構成することができないスキーム)の出現は、古典的なことばで提出可能であった問題に対しても、この問題の新しい基礎付けが緩やかに受け入れられていった。
ピエール・ドリーニュ (Pierre Deligne) やデヴィッド・マンフォード (David Mumford) やミハイル・アルティン (Michael Artin) による、本来はモジュライ問題である代数的空間や代数的スタックでのその後の仕事により、さらに現代代数幾何学の幾何学的柔軟性を拡大していった。グロタンディークは、スキームの一般化として、環付きトポスのあるタイプを提唱し、環付きトポスの次に彼が提唱した相対スキームは、M.ハキム (M. Hakim) により開発された。最近の高次代数スタックやホモトピックな導来代数幾何学は、さらに幾何学的直感の到達範囲を拡大する必要があり、ホモトピー理論に近い精神を代数幾何学へもたらす。
スキームの圏
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。 正確な語句に改訳できる方を求めています。 |
局所環付き空間の射を射とすると、スキームは圏をなす。
スキームからアフィンスキームへの射は、次の反変な随伴函手により、環準同型のことばで完全に理解される。全てのスキーム X と全ての可換環 A に対して、自然な同値関係
- HomSchemes(X,Spec(A))≅HomCRing(A,OX(X)){displaystyle operatorname {Hom} _{rm {Schemes}}(X,operatorname {Spec} (A))cong operatorname {Hom} _{rm {CRing}}(A,{mathcal {O}}_{X}(X))}
が成り立つ。
Z は環の圏の始対象であり、スキームの圏は Spec(Z) を終対象として持っている。
スキームの圏は有限の積を持っているが、注意して扱わねばならない。(X, OX) と (Y, OY) の積スキームの基礎となる位相空間は、位相空間 X と Y の積にいつも等しいとは言えない。実際、積スキームの基礎となる位相空間は、位相空間の積よりも多くの点を持っている。例えば、K を 9つの元からなる体とすると、Spec K × Spec K ≈ Spec (K ⊗Z K) ≈ Spec (K ⊗Z/3Z K) ≈ Spec (K × K) であり、K はたった一つの要素しか持っていないが、Spec K × Spec K は 2つの要素を持っている。
スキーム S{displaystyle S} に対し、S{displaystyle S} 上のスキームの圏もファイバー積の構造を持ち、ファイバー積は終対象 S{displaystyle S} を持つので、このことから有限な極限を持つ。
OX 加群
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。 正確な語句に改訳できる方を求めています。 |
可換環 R を研究するときに可換環論において R 加群が中心的なのと同様に、構造層 OX を持つスキーム X の研究において OX 加群が中心的である。(OX 加群の定義については局所環付き空間を参照。)OX 加群の圏はアーベル圏である。特に重要なのは X 上の連接層であり、これは X のアフィン部分上の有限生成な(通常の)加群から生じるものである。X 上の連接層の圏もまたアーベル圏である。
スキーム X の構造層 OX の切断は正則函数と呼ばれ、これは X の各開集合 U 上で定義される。OX の可逆部分層は、O ∗
X と書かれるが、乗法について可逆な正則関数の芽のみからなる。ほとんどの場合、層 KX{displaystyle K_{X}} は X{displaystyle X} のアフィン開集合 Spec(A){displaystyle Spec(A)} 上で A{displaystyle A} の全商環 Q(A){displaystyle Q(A)} を対応させることで得られる。(しかし、定義がより込み入っている場合もある。)[1]KX{displaystyle K_{X}} の切断を X{displaystyle X} の有理函数(rational function)と呼ぶ。その可逆な部分層を KX∗{displaystyle K_{X}^{*}} と書く。この可逆層の同型類全体 Pic(X){displaystyle Pic(X)} は、テンソル積によりアーベル群となり、ピカール群と呼ばれ、H1(X,OX∗){displaystyle H^{1}(X,mathbb {O} _{X}^{*})} に同型である。射影スキームの場合、大域切断が定数しかないが、この場合も X{displaystyle X} を覆う各々の開集合上の断面を正則函数と言う。
関連項目
- 環 (数学)
- トポス (数学)
- エタール・コホモロジー
- 局所環付き空間
- アレクサンドル・グロタンディーク
- アフィンスキーム
- 射影スキーム
- 導来圏
参考文献
^ Kleiman, Misconceptions about KX, L'Enseignement Mathematique.
David Eisenbud; Joe Harris (1998). The Geometry of Schemes. Springer-Verlag. ISBN 0-387-98637-5.
Robin Hartshorne (1997). Algebraic Geometry. Springer-Verlag. ISBN 0-387-90244-9.
- [ 上記の日本語訳:高橋 宣能、松下 大介 訳 代数幾何学 1,2,3 シュプリンガーフェアラーク東京 (2004) ISBN 443171135X ISBN 4431711368 ISBN 4431711376 ]
David Mumford (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians (2nd ed. ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 3-540-63293-X.
Qing Liu (2002). Algebraic Geometry and Arithmetic Curves. Oxford University Press. ISBN 0-19-850284-2.
Grothendieck, A.; Dieudonné J. (1960). Eléments de Géométrie Algébrique I. Le langage des schemas.. Paris: Inst. Hautes Etudes Sci..