Characteristics for nonhomogeneous wave equation $y_{tt}=y_{xx} + f$












1












$begingroup$


Consider the initial- and boundary-value problem
$$eqalign{
& {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
& y(t,0) = y(t,1) = 0 cr
& y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$

To solve that, I reduced the above system to 1-d hyperbolic system by letting
$$eqalign{
& p = {y_t} - {y_x} cr
& q = {y_t} + {y_x} cr} $$

We obtain
$$eqalign{
& {p_t} = -{p_x} + f(t,x) cr
& {q_t} = {q_x} + f(t,x) cr
& p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
& p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$

The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
let us consider the first transport equation,
We have along x^-:
$$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
Let $f$ be defined as$$f(t,x) = left{ matrix
{f_1}(t,x),{text{ if x + t}} in (0,1),
{f_2}(t,x),{text{ if x + t}} in (1,2).
right.$$

The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
Integrating over $(0,t)$, we get
$$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
How can I write the solution in function of $f_1$ and $f_2$?
Is the following expression correct?
$$
p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$



Or that expression?
$$eqalign{
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Consider the initial- and boundary-value problem
    $$eqalign{
    & {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
    & y(t,0) = y(t,1) = 0 cr
    & y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$

    To solve that, I reduced the above system to 1-d hyperbolic system by letting
    $$eqalign{
    & p = {y_t} - {y_x} cr
    & q = {y_t} + {y_x} cr} $$

    We obtain
    $$eqalign{
    & {p_t} = -{p_x} + f(t,x) cr
    & {q_t} = {q_x} + f(t,x) cr
    & p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
    & p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$

    The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
    let us consider the first transport equation,
    We have along x^-:
    $$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
    Let $f$ be defined as$$f(t,x) = left{ matrix
    {f_1}(t,x),{text{ if x + t}} in (0,1),
    {f_2}(t,x),{text{ if x + t}} in (1,2).
    right.$$

    The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
    Integrating over $(0,t)$, we get
    $$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
    How can I write the solution in function of $f_1$ and $f_2$?
    Is the following expression correct?
    $$
    p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$



    Or that expression?
    $$eqalign{
    & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
    & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Consider the initial- and boundary-value problem
      $$eqalign{
      & {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
      & y(t,0) = y(t,1) = 0 cr
      & y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$

      To solve that, I reduced the above system to 1-d hyperbolic system by letting
      $$eqalign{
      & p = {y_t} - {y_x} cr
      & q = {y_t} + {y_x} cr} $$

      We obtain
      $$eqalign{
      & {p_t} = -{p_x} + f(t,x) cr
      & {q_t} = {q_x} + f(t,x) cr
      & p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
      & p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$

      The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
      let us consider the first transport equation,
      We have along x^-:
      $$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
      Let $f$ be defined as$$f(t,x) = left{ matrix
      {f_1}(t,x),{text{ if x + t}} in (0,1),
      {f_2}(t,x),{text{ if x + t}} in (1,2).
      right.$$

      The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
      Integrating over $(0,t)$, we get
      $$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
      How can I write the solution in function of $f_1$ and $f_2$?
      Is the following expression correct?
      $$
      p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$



      Or that expression?
      $$eqalign{
      & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
      & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$










      share|cite|improve this question











      $endgroup$




      Consider the initial- and boundary-value problem
      $$eqalign{
      & {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
      & y(t,0) = y(t,1) = 0 cr
      & y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$

      To solve that, I reduced the above system to 1-d hyperbolic system by letting
      $$eqalign{
      & p = {y_t} - {y_x} cr
      & q = {y_t} + {y_x} cr} $$

      We obtain
      $$eqalign{
      & {p_t} = -{p_x} + f(t,x) cr
      & {q_t} = {q_x} + f(t,x) cr
      & p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
      & p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$

      The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
      let us consider the first transport equation,
      We have along x^-:
      $$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
      Let $f$ be defined as$$f(t,x) = left{ matrix
      {f_1}(t,x),{text{ if x + t}} in (0,1),
      {f_2}(t,x),{text{ if x + t}} in (1,2).
      right.$$

      The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
      Integrating over $(0,t)$, we get
      $$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
      How can I write the solution in function of $f_1$ and $f_2$?
      Is the following expression correct?
      $$
      p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$



      Or that expression?
      $$eqalign{
      & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
      & p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$







      pde wave-equation characteristics hyperbolic-equations linear-pde






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 16:44









      Harry49

      7,44431340




      7,44431340










      asked Jan 18 at 16:08









      GustaveGustave

      734211




      734211






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078431%2fcharacteristics-for-nonhomogeneous-wave-equation-y-tt-y-xx-f%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078431%2fcharacteristics-for-nonhomogeneous-wave-equation-y-tt-y-xx-f%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]