Characteristics for nonhomogeneous wave equation $y_{tt}=y_{xx} + f$
$begingroup$
Consider the initial- and boundary-value problem
$$eqalign{
& {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
& y(t,0) = y(t,1) = 0 cr
& y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$
To solve that, I reduced the above system to 1-d hyperbolic system by letting
$$eqalign{
& p = {y_t} - {y_x} cr
& q = {y_t} + {y_x} cr} $$
We obtain
$$eqalign{
& {p_t} = -{p_x} + f(t,x) cr
& {q_t} = {q_x} + f(t,x) cr
& p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
& p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$
The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
let us consider the first transport equation,
We have along x^-:
$$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
Let $f$ be defined as$$f(t,x) = left{ matrix
{f_1}(t,x),{text{ if x + t}} in (0,1),
{f_2}(t,x),{text{ if x + t}} in (1,2).
right.$$
The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
Integrating over $(0,t)$, we get
$$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
How can I write the solution in function of $f_1$ and $f_2$?
Is the following expression correct?
$$
p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$
Or that expression?
$$eqalign{
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$
pde wave-equation characteristics hyperbolic-equations linear-pde
$endgroup$
add a comment |
$begingroup$
Consider the initial- and boundary-value problem
$$eqalign{
& {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
& y(t,0) = y(t,1) = 0 cr
& y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$
To solve that, I reduced the above system to 1-d hyperbolic system by letting
$$eqalign{
& p = {y_t} - {y_x} cr
& q = {y_t} + {y_x} cr} $$
We obtain
$$eqalign{
& {p_t} = -{p_x} + f(t,x) cr
& {q_t} = {q_x} + f(t,x) cr
& p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
& p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$
The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
let us consider the first transport equation,
We have along x^-:
$$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
Let $f$ be defined as$$f(t,x) = left{ matrix
{f_1}(t,x),{text{ if x + t}} in (0,1),
{f_2}(t,x),{text{ if x + t}} in (1,2).
right.$$
The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
Integrating over $(0,t)$, we get
$$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
How can I write the solution in function of $f_1$ and $f_2$?
Is the following expression correct?
$$
p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$
Or that expression?
$$eqalign{
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$
pde wave-equation characteristics hyperbolic-equations linear-pde
$endgroup$
add a comment |
$begingroup$
Consider the initial- and boundary-value problem
$$eqalign{
& {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
& y(t,0) = y(t,1) = 0 cr
& y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$
To solve that, I reduced the above system to 1-d hyperbolic system by letting
$$eqalign{
& p = {y_t} - {y_x} cr
& q = {y_t} + {y_x} cr} $$
We obtain
$$eqalign{
& {p_t} = -{p_x} + f(t,x) cr
& {q_t} = {q_x} + f(t,x) cr
& p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
& p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$
The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
let us consider the first transport equation,
We have along x^-:
$$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
Let $f$ be defined as$$f(t,x) = left{ matrix
{f_1}(t,x),{text{ if x + t}} in (0,1),
{f_2}(t,x),{text{ if x + t}} in (1,2).
right.$$
The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
Integrating over $(0,t)$, we get
$$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
How can I write the solution in function of $f_1$ and $f_2$?
Is the following expression correct?
$$
p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$
Or that expression?
$$eqalign{
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$
pde wave-equation characteristics hyperbolic-equations linear-pde
$endgroup$
Consider the initial- and boundary-value problem
$$eqalign{
& {y_{tt}} = {y_{xx}} + f(t,x){text{ }}{text{, (t}}{text{,x)}} in {text{(0}}{text{,}}infty {text{)}} times {text{(0}}{text{,1)}} cr
& y(t,0) = y(t,1) = 0 cr
& y(0,x) = {y_0}(x),{text{ }}{y_t}(0,x) = {y_1}(x) cr} $$
To solve that, I reduced the above system to 1-d hyperbolic system by letting
$$eqalign{
& p = {y_t} - {y_x} cr
& q = {y_t} + {y_x} cr} $$
We obtain
$$eqalign{
& {p_t} = -{p_x} + f(t,x) cr
& {q_t} = {q_x} + f(t,x) cr
& p(t,0) + q(t,0) = p(t,1) + q(t,1) = 0 cr
& p(0,x) = {p_0}(x),q(0,x) = {q_0}(x) cr} $$
The characteristic lines are $x^-=t+c_1$ and $x^+=-t+c_2$ for the first and second equation respectively.
let us consider the first transport equation,
We have along x^-:
$$frac{d}{{dt}}p(t,t + {c_1}) = f(t,t + {c_1})$$
Let $f$ be defined as$$f(t,x) = left{ matrix
{f_1}(t,x),{text{ if x + t}} in (0,1),
{f_2}(t,x),{text{ if x + t}} in (1,2).
right.$$
The characteristic $x^-$ will cuts the line $x=t$ in the point $t=frac{{1 - {c_1}}}{2}$.
Integrating over $(0,t)$, we get
$$p(t,t+c_1) = {p_0}(c_1) + intlimits_0^t {f(s,s+c_1)ds} $$
How can I write the solution in function of $f_1$ and $f_2$?
Is the following expression correct?
$$
p(t,x) = {p_0}(x-t) + intlimits_0^{frac{{1 - {c_1}}}{2}} {{f_1}(s,s - t + x)ds} + intlimits_{frac{{1 - {c_1}}}{2}}^{1 - {c_1}} {{f_2}(s,s - t + x)ds} $$
Or that expression?
$$eqalign{
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s+c_1)ds} ,{text{ if t}} in {text{(0}}{text{,}}frac{{1 - {c_1}}}{2}) cr
& p(t,t + {c_1}) = {p_0}({c_1}) + intlimits_0^t {{f_1}(s,s + {c_1})ds} + + intlimits_{frac{{1 - {c_1}}}{2}}^t {{f_2}(s,s + {c_1})ds} ,{text{ if t}} in {text{(}}frac{{1 - {c_1}}}{2},1 - {c_1}) cr} $$
pde wave-equation characteristics hyperbolic-equations linear-pde
pde wave-equation characteristics hyperbolic-equations linear-pde
edited Jan 23 at 16:44
Harry49
7,44431340
7,44431340
asked Jan 18 at 16:08
GustaveGustave
734211
734211
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078431%2fcharacteristics-for-nonhomogeneous-wave-equation-y-tt-y-xx-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078431%2fcharacteristics-for-nonhomogeneous-wave-equation-y-tt-y-xx-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown