subset using percentile for gridded data












0















I have gridded data that has 24249 obs and 963 var for daily maximum temperatures (K). I am looking for a way in r to select all days with maximum temperatures higher than the 90th percentile.



> dim(DailyT)
[1] 24249 963
> DailyT[1:4,1:7]
x y 1988-05-01 1988-05-02 1988-05-03 1988-05-04 1988-05-05
1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017
3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001
4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986


I did this but did not work



df<- DailyT[DailyT[,3:963] <= quantile(DailyT[,3:963],.9, na.rm = T, type = 6) ] 









share|improve this question























  • Maybe you find this helpful.

    – A. Suliman
    Nov 22 '18 at 9:07
















0















I have gridded data that has 24249 obs and 963 var for daily maximum temperatures (K). I am looking for a way in r to select all days with maximum temperatures higher than the 90th percentile.



> dim(DailyT)
[1] 24249 963
> DailyT[1:4,1:7]
x y 1988-05-01 1988-05-02 1988-05-03 1988-05-04 1988-05-05
1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017
3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001
4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986


I did this but did not work



df<- DailyT[DailyT[,3:963] <= quantile(DailyT[,3:963],.9, na.rm = T, type = 6) ] 









share|improve this question























  • Maybe you find this helpful.

    – A. Suliman
    Nov 22 '18 at 9:07














0












0








0








I have gridded data that has 24249 obs and 963 var for daily maximum temperatures (K). I am looking for a way in r to select all days with maximum temperatures higher than the 90th percentile.



> dim(DailyT)
[1] 24249 963
> DailyT[1:4,1:7]
x y 1988-05-01 1988-05-02 1988-05-03 1988-05-04 1988-05-05
1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017
3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001
4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986


I did this but did not work



df<- DailyT[DailyT[,3:963] <= quantile(DailyT[,3:963],.9, na.rm = T, type = 6) ] 









share|improve this question














I have gridded data that has 24249 obs and 963 var for daily maximum temperatures (K). I am looking for a way in r to select all days with maximum temperatures higher than the 90th percentile.



> dim(DailyT)
[1] 24249 963
> DailyT[1:4,1:7]
x y 1988-05-01 1988-05-02 1988-05-03 1988-05-04 1988-05-05
1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017
3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001
4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986


I did this but did not work



df<- DailyT[DailyT[,3:963] <= quantile(DailyT[,3:963],.9, na.rm = T, type = 6) ] 






r






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 22 '18 at 8:55









AliAli

337




337













  • Maybe you find this helpful.

    – A. Suliman
    Nov 22 '18 at 9:07



















  • Maybe you find this helpful.

    – A. Suliman
    Nov 22 '18 at 9:07

















Maybe you find this helpful.

– A. Suliman
Nov 22 '18 at 9:07





Maybe you find this helpful.

– A. Suliman
Nov 22 '18 at 9:07












1 Answer
1






active

oldest

votes


















0














First, you need an id column to identify the rows later. Then, calculate the 90% quantile of all temperature values. At the end subset data witch any row cells exceeding q.



DailyT <- cbind(id=rownames(DailyT), DailyT)  # to identify rows later
q <- quantile(as.matrix(DailyT[, -(1:3)]), .9, na.rm = T, type = 6) # 293.7003
DailyT.q <- DailyT[which(sapply(1:nrow(DailyT), function(x) any(DailyT[x, -(1:2)] >= q))), ]


Yields



> DailyT.q
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017


Edit:
To get the quantile rowwise use apply()



q90 <- apply(DailyT[, 4:8], MARGIN=1, quantile, .9,na.rm = T, type = 6)

> data.frame(DailyT, q90=q90)
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05 q90
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017 293.7017
3 3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001 293.7001
4 4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986 293.6986


Data



> dput(DailyT)
structure(list(x = c(34, 34.125, 34.25, 34.375), y = c(33L, 33L,
33L, 33L), X1988.05.01 = c(291.7603, 291.724, 291.6884, 291.6521
), X1988.05.02 = c(291.8044, 291.7951, 291.7866, 291.7781), X1988.05.03 = c(291.6158,
291.5439, 291.4721, 291.401), X1988.05.04 = c(292.9659, 292.9451,
292.925, 292.9049), X1988.05.05 = c(293.7032, 293.7017, 293.7001,
293.6986)), class = "data.frame", row.names = c(NA, -4L))





share|improve this answer


























  • Thanks, I need to calculate the 90% quantile of each row not of all data.

    – Ali
    Nov 24 '18 at 11:09











  • Aha, please see my edit.

    – jay.sf
    Nov 24 '18 at 11:24











  • Worked.... Many thanks

    – Ali
    Nov 24 '18 at 13:32











  • Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

    – jay.sf
    Nov 24 '18 at 13:58













Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427098%2fsubset-using-percentile-for-gridded-data%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














First, you need an id column to identify the rows later. Then, calculate the 90% quantile of all temperature values. At the end subset data witch any row cells exceeding q.



DailyT <- cbind(id=rownames(DailyT), DailyT)  # to identify rows later
q <- quantile(as.matrix(DailyT[, -(1:3)]), .9, na.rm = T, type = 6) # 293.7003
DailyT.q <- DailyT[which(sapply(1:nrow(DailyT), function(x) any(DailyT[x, -(1:2)] >= q))), ]


Yields



> DailyT.q
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017


Edit:
To get the quantile rowwise use apply()



q90 <- apply(DailyT[, 4:8], MARGIN=1, quantile, .9,na.rm = T, type = 6)

> data.frame(DailyT, q90=q90)
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05 q90
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017 293.7017
3 3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001 293.7001
4 4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986 293.6986


Data



> dput(DailyT)
structure(list(x = c(34, 34.125, 34.25, 34.375), y = c(33L, 33L,
33L, 33L), X1988.05.01 = c(291.7603, 291.724, 291.6884, 291.6521
), X1988.05.02 = c(291.8044, 291.7951, 291.7866, 291.7781), X1988.05.03 = c(291.6158,
291.5439, 291.4721, 291.401), X1988.05.04 = c(292.9659, 292.9451,
292.925, 292.9049), X1988.05.05 = c(293.7032, 293.7017, 293.7001,
293.6986)), class = "data.frame", row.names = c(NA, -4L))





share|improve this answer


























  • Thanks, I need to calculate the 90% quantile of each row not of all data.

    – Ali
    Nov 24 '18 at 11:09











  • Aha, please see my edit.

    – jay.sf
    Nov 24 '18 at 11:24











  • Worked.... Many thanks

    – Ali
    Nov 24 '18 at 13:32











  • Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

    – jay.sf
    Nov 24 '18 at 13:58


















0














First, you need an id column to identify the rows later. Then, calculate the 90% quantile of all temperature values. At the end subset data witch any row cells exceeding q.



DailyT <- cbind(id=rownames(DailyT), DailyT)  # to identify rows later
q <- quantile(as.matrix(DailyT[, -(1:3)]), .9, na.rm = T, type = 6) # 293.7003
DailyT.q <- DailyT[which(sapply(1:nrow(DailyT), function(x) any(DailyT[x, -(1:2)] >= q))), ]


Yields



> DailyT.q
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017


Edit:
To get the quantile rowwise use apply()



q90 <- apply(DailyT[, 4:8], MARGIN=1, quantile, .9,na.rm = T, type = 6)

> data.frame(DailyT, q90=q90)
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05 q90
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017 293.7017
3 3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001 293.7001
4 4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986 293.6986


Data



> dput(DailyT)
structure(list(x = c(34, 34.125, 34.25, 34.375), y = c(33L, 33L,
33L, 33L), X1988.05.01 = c(291.7603, 291.724, 291.6884, 291.6521
), X1988.05.02 = c(291.8044, 291.7951, 291.7866, 291.7781), X1988.05.03 = c(291.6158,
291.5439, 291.4721, 291.401), X1988.05.04 = c(292.9659, 292.9451,
292.925, 292.9049), X1988.05.05 = c(293.7032, 293.7017, 293.7001,
293.6986)), class = "data.frame", row.names = c(NA, -4L))





share|improve this answer


























  • Thanks, I need to calculate the 90% quantile of each row not of all data.

    – Ali
    Nov 24 '18 at 11:09











  • Aha, please see my edit.

    – jay.sf
    Nov 24 '18 at 11:24











  • Worked.... Many thanks

    – Ali
    Nov 24 '18 at 13:32











  • Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

    – jay.sf
    Nov 24 '18 at 13:58
















0












0








0







First, you need an id column to identify the rows later. Then, calculate the 90% quantile of all temperature values. At the end subset data witch any row cells exceeding q.



DailyT <- cbind(id=rownames(DailyT), DailyT)  # to identify rows later
q <- quantile(as.matrix(DailyT[, -(1:3)]), .9, na.rm = T, type = 6) # 293.7003
DailyT.q <- DailyT[which(sapply(1:nrow(DailyT), function(x) any(DailyT[x, -(1:2)] >= q))), ]


Yields



> DailyT.q
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017


Edit:
To get the quantile rowwise use apply()



q90 <- apply(DailyT[, 4:8], MARGIN=1, quantile, .9,na.rm = T, type = 6)

> data.frame(DailyT, q90=q90)
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05 q90
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017 293.7017
3 3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001 293.7001
4 4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986 293.6986


Data



> dput(DailyT)
structure(list(x = c(34, 34.125, 34.25, 34.375), y = c(33L, 33L,
33L, 33L), X1988.05.01 = c(291.7603, 291.724, 291.6884, 291.6521
), X1988.05.02 = c(291.8044, 291.7951, 291.7866, 291.7781), X1988.05.03 = c(291.6158,
291.5439, 291.4721, 291.401), X1988.05.04 = c(292.9659, 292.9451,
292.925, 292.9049), X1988.05.05 = c(293.7032, 293.7017, 293.7001,
293.6986)), class = "data.frame", row.names = c(NA, -4L))





share|improve this answer















First, you need an id column to identify the rows later. Then, calculate the 90% quantile of all temperature values. At the end subset data witch any row cells exceeding q.



DailyT <- cbind(id=rownames(DailyT), DailyT)  # to identify rows later
q <- quantile(as.matrix(DailyT[, -(1:3)]), .9, na.rm = T, type = 6) # 293.7003
DailyT.q <- DailyT[which(sapply(1:nrow(DailyT), function(x) any(DailyT[x, -(1:2)] >= q))), ]


Yields



> DailyT.q
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017


Edit:
To get the quantile rowwise use apply()



q90 <- apply(DailyT[, 4:8], MARGIN=1, quantile, .9,na.rm = T, type = 6)

> data.frame(DailyT, q90=q90)
id x y X1988.05.01 X1988.05.02 X1988.05.03 X1988.05.04 X1988.05.05 q90
1 1 34.000 33 291.7603 291.8044 291.6158 292.9659 293.7032 293.7032
2 2 34.125 33 291.7240 291.7951 291.5439 292.9451 293.7017 293.7017
3 3 34.250 33 291.6884 291.7866 291.4721 292.9250 293.7001 293.7001
4 4 34.375 33 291.6521 291.7781 291.4010 292.9049 293.6986 293.6986


Data



> dput(DailyT)
structure(list(x = c(34, 34.125, 34.25, 34.375), y = c(33L, 33L,
33L, 33L), X1988.05.01 = c(291.7603, 291.724, 291.6884, 291.6521
), X1988.05.02 = c(291.8044, 291.7951, 291.7866, 291.7781), X1988.05.03 = c(291.6158,
291.5439, 291.4721, 291.401), X1988.05.04 = c(292.9659, 292.9451,
292.925, 292.9049), X1988.05.05 = c(293.7032, 293.7017, 293.7001,
293.6986)), class = "data.frame", row.names = c(NA, -4L))






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 24 '18 at 11:24

























answered Nov 22 '18 at 9:21









jay.sfjay.sf

5,51631739




5,51631739













  • Thanks, I need to calculate the 90% quantile of each row not of all data.

    – Ali
    Nov 24 '18 at 11:09











  • Aha, please see my edit.

    – jay.sf
    Nov 24 '18 at 11:24











  • Worked.... Many thanks

    – Ali
    Nov 24 '18 at 13:32











  • Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

    – jay.sf
    Nov 24 '18 at 13:58





















  • Thanks, I need to calculate the 90% quantile of each row not of all data.

    – Ali
    Nov 24 '18 at 11:09











  • Aha, please see my edit.

    – jay.sf
    Nov 24 '18 at 11:24











  • Worked.... Many thanks

    – Ali
    Nov 24 '18 at 13:32











  • Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

    – jay.sf
    Nov 24 '18 at 13:58



















Thanks, I need to calculate the 90% quantile of each row not of all data.

– Ali
Nov 24 '18 at 11:09





Thanks, I need to calculate the 90% quantile of each row not of all data.

– Ali
Nov 24 '18 at 11:09













Aha, please see my edit.

– jay.sf
Nov 24 '18 at 11:24





Aha, please see my edit.

– jay.sf
Nov 24 '18 at 11:24













Worked.... Many thanks

– Ali
Nov 24 '18 at 13:32





Worked.... Many thanks

– Ali
Nov 24 '18 at 13:32













Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

– jay.sf
Nov 24 '18 at 13:58







Very good! - Please mark the question as answered when you're satisfied with the given answer and win +2 reputation. This stops people spending time on answering a question that has already been answered.

– jay.sf
Nov 24 '18 at 13:58






















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427098%2fsubset-using-percentile-for-gridded-data%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules