$1 + {alpha}^2 + 2 alpha cos(omega)$ as a square of distance












0












$begingroup$


How to prove that



$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$



starting from



$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$



(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Look for the roots of this second degree polynomial in $alpha$.
    $endgroup$
    – Stefan Lafon
    Jan 18 at 15:35








  • 4




    $begingroup$
    Just do the 'backward' proof in reverse.
    $endgroup$
    – lightxbulb
    Jan 18 at 15:39
















0












$begingroup$


How to prove that



$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$



starting from



$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$



(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Look for the roots of this second degree polynomial in $alpha$.
    $endgroup$
    – Stefan Lafon
    Jan 18 at 15:35








  • 4




    $begingroup$
    Just do the 'backward' proof in reverse.
    $endgroup$
    – lightxbulb
    Jan 18 at 15:39














0












0








0





$begingroup$


How to prove that



$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$



starting from



$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$



(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)










share|cite|improve this question











$endgroup$




How to prove that



$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$



starting from



$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$



(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)







complex-analysis complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 15:43









KM101

6,0351525




6,0351525










asked Jan 18 at 15:35









DiscreteMathDiscreteMath

414




414








  • 2




    $begingroup$
    Look for the roots of this second degree polynomial in $alpha$.
    $endgroup$
    – Stefan Lafon
    Jan 18 at 15:35








  • 4




    $begingroup$
    Just do the 'backward' proof in reverse.
    $endgroup$
    – lightxbulb
    Jan 18 at 15:39














  • 2




    $begingroup$
    Look for the roots of this second degree polynomial in $alpha$.
    $endgroup$
    – Stefan Lafon
    Jan 18 at 15:35








  • 4




    $begingroup$
    Just do the 'backward' proof in reverse.
    $endgroup$
    – lightxbulb
    Jan 18 at 15:39








2




2




$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35






$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35






4




4




$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39




$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39










2 Answers
2






active

oldest

votes


















2












$begingroup$

assuming $alpha$ is a real number (not complex):



$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Hint



    Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078397%2f1-alpha2-2-alpha-cos-omega-as-a-square-of-distance%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      assuming $alpha$ is a real number (not complex):



      $$1-2 alpha cos(omega)+|alpha|^2 $$
      $$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
      $$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
      $$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
      $$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
      $$|1-alpha e^{jomega}|^2$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        assuming $alpha$ is a real number (not complex):



        $$1-2 alpha cos(omega)+|alpha|^2 $$
        $$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
        $$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
        $$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
        $$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
        $$|1-alpha e^{jomega}|^2$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          assuming $alpha$ is a real number (not complex):



          $$1-2 alpha cos(omega)+|alpha|^2 $$
          $$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
          $$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
          $$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
          $$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
          $$|1-alpha e^{jomega}|^2$$






          share|cite|improve this answer











          $endgroup$



          assuming $alpha$ is a real number (not complex):



          $$1-2 alpha cos(omega)+|alpha|^2 $$
          $$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
          $$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
          $$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
          $$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
          $$|1-alpha e^{jomega}|^2$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 18 at 16:31

























          answered Jan 18 at 16:19









          Bill MooreBill Moore

          1376




          1376























              0












              $begingroup$

              Hint



              Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Hint



                Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint



                  Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.






                  share|cite|improve this answer









                  $endgroup$



                  Hint



                  Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 18 at 15:41









                  Mostafa AyazMostafa Ayaz

                  15.6k3939




                  15.6k3939






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078397%2f1-alpha2-2-alpha-cos-omega-as-a-square-of-distance%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      SQL update select statement

                      'app-layout' is not a known element: how to share Component with different Modules