$1 + {alpha}^2 + 2 alpha cos(omega)$ as a square of distance
$begingroup$
How to prove that
$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$
starting from
$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$
(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)
complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
How to prove that
$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$
starting from
$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$
(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)
complex-analysis complex-numbers
$endgroup$
2
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
4
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39
add a comment |
$begingroup$
How to prove that
$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$
starting from
$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$
(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)
complex-analysis complex-numbers
$endgroup$
How to prove that
$$ 1 + {alpha}^2 + 2 alpha cos(omega) = |1 - alpha e^{-jomega}|^2$$
starting from
$$ 1 + {alpha}^2 + 2 alpha cos(omega)$$
(That is, no backwards proofs of multiplying out $ |1 - alpha e^{-jomega}|^2$ to see that it matches $1 + {alpha}^2 + 2 alpha cos(omega)$.)
complex-analysis complex-numbers
complex-analysis complex-numbers
edited Jan 18 at 15:43
KM101
6,0351525
6,0351525
asked Jan 18 at 15:35
DiscreteMathDiscreteMath
414
414
2
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
4
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39
add a comment |
2
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
4
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39
2
2
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
4
4
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
assuming $alpha$ is a real number (not complex):
$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$
$endgroup$
add a comment |
$begingroup$
Hint
Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078397%2f1-alpha2-2-alpha-cos-omega-as-a-square-of-distance%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
assuming $alpha$ is a real number (not complex):
$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$
$endgroup$
add a comment |
$begingroup$
assuming $alpha$ is a real number (not complex):
$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$
$endgroup$
add a comment |
$begingroup$
assuming $alpha$ is a real number (not complex):
$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$
$endgroup$
assuming $alpha$ is a real number (not complex):
$$1-2 alpha cos(omega)+|alpha|^2 $$
$$1-2 alpha frac{1}{2} (e^{jomega}+e^{-jomega})+|alpha|^2$$
$$1-alpha e^{jomega} - alpha e^{-jomega} + alpha^2 e^{jomega}e^{-jomega}$$
$$(1-alpha e^{jomega}) - alpha e^{-jomega}(1-alpha e^{jomega})$$
$$(1-alpha e^{jomega})(1-alpha e^{-jomega})$$
$$|1-alpha e^{jomega}|^2$$
edited Jan 18 at 16:31
answered Jan 18 at 16:19
Bill MooreBill Moore
1376
1376
add a comment |
add a comment |
$begingroup$
Hint
Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.
$endgroup$
add a comment |
$begingroup$
Hint
Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.
$endgroup$
add a comment |
$begingroup$
Hint
Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.
$endgroup$
Hint
Use $$alpha^2=alpha^2(cos^2omega+sin^2omega)$$and substitute.
answered Jan 18 at 15:41
Mostafa AyazMostafa Ayaz
15.6k3939
15.6k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078397%2f1-alpha2-2-alpha-cos-omega-as-a-square-of-distance%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Look for the roots of this second degree polynomial in $alpha$.
$endgroup$
– Stefan Lafon
Jan 18 at 15:35
4
$begingroup$
Just do the 'backward' proof in reverse.
$endgroup$
– lightxbulb
Jan 18 at 15:39