Conditional probability of Negative Binomial R.V. given the SUM of its values
$begingroup$
Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.
How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?
I know that applying the definition of conditional probability you can get the following:
begin{align}
Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
end{align}
Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:
$$
z_{i1} sim Poissbigg(mu_{ij}bigg)
$$
$$
sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
$$
$$
sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
$$
and this would result in:
begin{align}
Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
&sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
end{align}
and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,
$$
mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
$$
How can I achieve a similar result when dealing with Negative Binomial random variables?
conditional-expectation conditional-probability poisson-distribution negative-binomial
$endgroup$
add a comment |
$begingroup$
Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.
How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?
I know that applying the definition of conditional probability you can get the following:
begin{align}
Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
end{align}
Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:
$$
z_{i1} sim Poissbigg(mu_{ij}bigg)
$$
$$
sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
$$
$$
sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
$$
and this would result in:
begin{align}
Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
&sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
end{align}
and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,
$$
mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
$$
How can I achieve a similar result when dealing with Negative Binomial random variables?
conditional-expectation conditional-probability poisson-distribution negative-binomial
$endgroup$
add a comment |
$begingroup$
Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.
How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?
I know that applying the definition of conditional probability you can get the following:
begin{align}
Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
end{align}
Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:
$$
z_{i1} sim Poissbigg(mu_{ij}bigg)
$$
$$
sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
$$
$$
sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
$$
and this would result in:
begin{align}
Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
&sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
end{align}
and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,
$$
mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
$$
How can I achieve a similar result when dealing with Negative Binomial random variables?
conditional-expectation conditional-probability poisson-distribution negative-binomial
$endgroup$
Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.
How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?
I know that applying the definition of conditional probability you can get the following:
begin{align}
Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
end{align}
Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:
$$
z_{i1} sim Poissbigg(mu_{ij}bigg)
$$
$$
sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
$$
$$
sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
$$
and this would result in:
begin{align}
Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
&sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
end{align}
and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,
$$
mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
$$
How can I achieve a similar result when dealing with Negative Binomial random variables?
conditional-expectation conditional-probability poisson-distribution negative-binomial
conditional-expectation conditional-probability poisson-distribution negative-binomial
asked Jan 18 at 14:30


mscipiomscipio
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078310%2fconditional-probability-of-negative-binomial-r-v-given-the-sum-of-its-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078310%2fconditional-probability-of-negative-binomial-r-v-given-the-sum-of-its-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown