Conditional probability of Negative Binomial R.V. given the SUM of its values












0












$begingroup$


Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.



How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?



I know that applying the definition of conditional probability you can get the following:



begin{align}
Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
&= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
end{align}



Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:



$$
z_{i1} sim Poissbigg(mu_{ij}bigg)
$$

$$
sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
$$

$$
sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
$$



and this would result in:



begin{align}
Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
&sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
end{align}



and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,



$$
mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
$$



How can I achieve a similar result when dealing with Negative Binomial random variables?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.



    How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?



    I know that applying the definition of conditional probability you can get the following:



    begin{align}
    Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
    &= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
    &= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
    end{align}



    Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:



    $$
    z_{i1} sim Poissbigg(mu_{ij}bigg)
    $$

    $$
    sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
    $$

    $$
    sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
    $$



    and this would result in:



    begin{align}
    Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
    &sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
    end{align}



    and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,



    $$
    mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
    $$



    How can I achieve a similar result when dealing with Negative Binomial random variables?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.



      How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?



      I know that applying the definition of conditional probability you can get the following:



      begin{align}
      Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
      &= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
      &= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
      end{align}



      Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:



      $$
      z_{i1} sim Poissbigg(mu_{ij}bigg)
      $$

      $$
      sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
      $$

      $$
      sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
      $$



      and this would result in:



      begin{align}
      Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
      &sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
      end{align}



      and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,



      $$
      mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
      $$



      How can I achieve a similar result when dealing with Negative Binomial random variables?










      share|cite|improve this question









      $endgroup$




      Suppose ${z_{ij}}$ are independent Negative Binomial random variables with means ${mu_{ij}}$, with $i=1dots I$ and $j=1dots J$.



      How do you find the (expectation of) conditional probability function of $z_{ij}$ given that $y_i = sum_{j=1}^{J} z_{ij}$ ?



      I know that applying the definition of conditional probability you can get the following:



      begin{align}
      Pbigg[ z_{i1} = k bigg| sum_j z_{ij} = y_ibigg] &= frac{P[ z_{i1} = k ∩ sum_{j=1}^{J} z_{ij} = y_i]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
      &= frac{P[ z_{i1} = k ∩ sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]} \
      &= frac{P[ z_{i1} = k] P[sum_{j=2}^{J} z_{ij} = y_i - k]}{P[ sum_{j=1}^{J} z_{ij} = y_i]}
      end{align}



      Now, IF we where dealing with Poisson R.V.s (which are quite close relatives of NB ones), we could plug into the last equality the following distributions:



      $$
      z_{i1} sim Poissbigg(mu_{ij}bigg)
      $$

      $$
      sum_{j=2}^{J} z_{ij} sim Poissbigg(sum_{j=2}^{J} mu_{ij}bigg)
      $$

      $$
      sum_{j=1}^{J} z_{ij} sim Poissbigg(sum_{j=1}^{J} mu_{ij}bigg)
      $$



      and this would result in:



      begin{align}
      Pbigg[z_{i1} bigg| sum_j z_{ij} = y_i bigg] &sim Binomialbigg(sum_j z_{ij}, frac{mathbb{E}(z_{i1})}{sum_jmathbb{E}(z_{i1})} bigg) \
      &sim Binomialbigg(y_{i}, frac{mu_{i1}}{sum_jmu_{ij}} bigg)
      end{align}



      and the expectation of a Binomial distr $Bin(alpha, beta)$ is equal to $alpha beta$,



      $$
      mathbb{E}_{ P[z_{ij} | sum_j z_{ij} = y_i ] } [z_{i1}]= y_i * frac{mu_{i1}}{sum_jmu_{ij}}
      $$



      How can I achieve a similar result when dealing with Negative Binomial random variables?







      conditional-expectation conditional-probability poisson-distribution negative-binomial






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 18 at 14:30









      mscipiomscipio

      11




      11






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078310%2fconditional-probability-of-negative-binomial-r-v-given-the-sum-of-its-values%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078310%2fconditional-probability-of-negative-binomial-r-v-given-the-sum-of-its-values%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          Npm cannot find a required file even through it is in the searched directory