Find $P_2$ and $Q_2$ where $P_2cdot A cdot Q_2=B$ knowing that $Pcdot A cdot Q= I_r $












1












$begingroup$


Lets assume we have three matrix $A$,$P$ and $Q$, where:



$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$



Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$



And $B$ is a known matrix, how can I do this?





Example: (This is the exercise the problem comes from)



$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$



Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$



I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$



Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$
and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$



Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$



Now find $P_2$ and $Q_2$ where:



$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$



Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
    $endgroup$
    – A.Γ.
    Jan 18 at 11:56












  • $begingroup$
    Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
    $endgroup$
    – user605734 MBS
    Jan 18 at 12:05










  • $begingroup$
    For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
    $endgroup$
    – amd
    Jan 21 at 0:13
















1












$begingroup$


Lets assume we have three matrix $A$,$P$ and $Q$, where:



$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$



Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$



And $B$ is a known matrix, how can I do this?





Example: (This is the exercise the problem comes from)



$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$



Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$



I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$



Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$
and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$



Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$



Now find $P_2$ and $Q_2$ where:



$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$



Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
    $endgroup$
    – A.Γ.
    Jan 18 at 11:56












  • $begingroup$
    Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
    $endgroup$
    – user605734 MBS
    Jan 18 at 12:05










  • $begingroup$
    For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
    $endgroup$
    – amd
    Jan 21 at 0:13














1












1








1





$begingroup$


Lets assume we have three matrix $A$,$P$ and $Q$, where:



$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$



Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$



And $B$ is a known matrix, how can I do this?





Example: (This is the exercise the problem comes from)



$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$



Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$



I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$



Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$
and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$



Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$



Now find $P_2$ and $Q_2$ where:



$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$



Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?










share|cite|improve this question









$endgroup$




Lets assume we have three matrix $A$,$P$ and $Q$, where:



$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$



Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$



And $B$ is a known matrix, how can I do this?





Example: (This is the exercise the problem comes from)



$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$



Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$



I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$



Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$
and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$



Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$



Now find $P_2$ and $Q_2$ where:



$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$



Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 11:51









user605734 MBSuser605734 MBS

3029




3029








  • 2




    $begingroup$
    If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
    $endgroup$
    – A.Γ.
    Jan 18 at 11:56












  • $begingroup$
    Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
    $endgroup$
    – user605734 MBS
    Jan 18 at 12:05










  • $begingroup$
    For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
    $endgroup$
    – amd
    Jan 21 at 0:13














  • 2




    $begingroup$
    If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
    $endgroup$
    – A.Γ.
    Jan 18 at 11:56












  • $begingroup$
    Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
    $endgroup$
    – user605734 MBS
    Jan 18 at 12:05










  • $begingroup$
    For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
    $endgroup$
    – amd
    Jan 21 at 0:13








2




2




$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56






$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56














$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05




$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05












$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13




$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078143%2ffind-p-2-and-q-2-where-p-2-cdot-a-cdot-q-2-b-knowing-that-p-cdot-a-cdot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078143%2ffind-p-2-and-q-2-where-p-2-cdot-a-cdot-q-2-b-knowing-that-p-cdot-a-cdot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith