Find $P_2$ and $Q_2$ where $P_2cdot A cdot Q_2=B$ knowing that $Pcdot A cdot Q= I_r $
$begingroup$
Lets assume we have three matrix $A$,$P$ and $Q$, where:
$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$
Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$
And $B$ is a known matrix, how can I do this?
Example: (This is the exercise the problem comes from)
$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$
Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$
I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$
Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$ and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$
Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$
Now find $P_2$ and $Q_2$ where:
$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$
Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Lets assume we have three matrix $A$,$P$ and $Q$, where:
$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$
Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$
And $B$ is a known matrix, how can I do this?
Example: (This is the exercise the problem comes from)
$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$
Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$
I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$
Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$ and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$
Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$
Now find $P_2$ and $Q_2$ where:
$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$
Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?
linear-algebra
$endgroup$
2
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13
add a comment |
$begingroup$
Lets assume we have three matrix $A$,$P$ and $Q$, where:
$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$
Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$
And $B$ is a known matrix, how can I do this?
Example: (This is the exercise the problem comes from)
$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$
Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$
I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$
Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$ and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$
Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$
Now find $P_2$ and $Q_2$ where:
$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$
Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?
linear-algebra
$endgroup$
Lets assume we have three matrix $A$,$P$ and $Q$, where:
$$Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$$
Now find $P_2$ and $Q_2$ where:
$$P_2cdot A cdot Q_2=B$$
And $B$ is a known matrix, how can I do this?
Example: (This is the exercise the problem comes from)
$$A=
left[ {begin{array}{cc}
1 & 0 & 2\
-1 & 1 & -1\
-1 & 4 & 2\
end{array} } right]
$$
Find $P$ and $Q$ where $Pcdot A cdot Q=
left[ {begin{array}{cc}
I_r & 0\
0 & 0\
end{array} } right]
$
I start defining $A=M_{beta_{k}}^{beta_{k}}(f)$
Then I find $Q=M_{beta}^{beta_{k}}=
left[ {begin{array}{cc}
1 & 0 & -2\
0 & 1 & -1\
0 & 0 & 1\
end{array} } right]$ and $P=M_{beta_{k}}^{beta^{'}}=left[ {begin{array}{cc}
0 & -4/3 & 1/3\
0 & -1/3 & 1/3\
1 & 4/3 & -1/3\
end{array} } right]$
Where $beta = {(1,0,0),(0,1,0),(-2,-1,1)}$ and $beta^{'}={(1,-1,1),(0,1,4),(1,0,0)}$
Now find $P_2$ and $Q_2$ where:
$P_2cdot A cdot Q_2=B=left[ {begin{array}{cc}
1 & 0 & 1\
1 & 1 & 0\
0 & 1 & -1\
end{array} } right]$
Those 2 matrices exist as $rg(A)=rg(B)$, how to find them?
linear-algebra
linear-algebra
asked Jan 18 at 11:51


user605734 MBSuser605734 MBS
3029
3029
2
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13
add a comment |
2
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13
2
2
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078143%2ffind-p-2-and-q-2-where-p-2-cdot-a-cdot-q-2-b-knowing-that-p-cdot-a-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078143%2ffind-p-2-and-q-2-where-p-2-cdot-a-cdot-q-2-b-knowing-that-p-cdot-a-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If you find $P_3BQ_3=begin{bmatrix}I_r & 0\0 & 0end{bmatrix}$ then it is straigthforward from $P_3BQ_3=PAQ$.
$endgroup$
– A.Γ.
Jan 18 at 11:56
$begingroup$
Can I define $B=M_{beta_{k}}^{beta_{k}}(f)$ after defining $A=M_{beta_{k}}^{beta_{k}}(f)$? Or is it another function and $B=M_{beta_{k}}^{beta_{k}}(g)$?
$endgroup$
– user605734 MBS
Jan 18 at 12:05
$begingroup$
For the approach that you’re taking, assume that $A$ and $B$ represent the same map, but with expressed w/r different pairs of bases.
$endgroup$
– amd
Jan 21 at 0:13