Find $underset{{x,y}to {0,0}}{text{lim}}exp left(-frac{left| x-yright| }{(x-y)^2}right)$.












0












$begingroup$


Find $underset{{x,y}to {0,0}}{text{lim}}exp left(-frac{left| x-yright| }{(x-y)^2}right)$ and prove the limit exists by $epsilon - delta$ definition.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Find $underset{{x,y}to {0,0}}{text{lim}}exp left(-frac{left| x-yright| }{(x-y)^2}right)$ and prove the limit exists by $epsilon - delta$ definition.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Find $underset{{x,y}to {0,0}}{text{lim}}exp left(-frac{left| x-yright| }{(x-y)^2}right)$ and prove the limit exists by $epsilon - delta$ definition.










      share|cite|improve this question









      $endgroup$




      Find $underset{{x,y}to {0,0}}{text{lim}}exp left(-frac{left| x-yright| }{(x-y)^2}right)$ and prove the limit exists by $epsilon - delta$ definition.







      real-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 18 at 9:45









      helios321helios321

      56349




      56349






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The limit is $0$. Let $0<epsilon <1$ and $delta=frac 1 {2ln (frac 1 {epsilon})}$. Note that $frac {|x-y|} {(x-y)^{2}} =frac 1 {|x-y|}$. Can you now show that $e^{-frac {|x-y|} {(x-y)^{2}}}<epsilon$ whenever $|x-y|<delta$? [Use the fact that $|(x,y)|<delta$ implies $|x-y| <|x|+|y| <2delta$].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
            $endgroup$
            – helios321
            Jan 18 at 9:56










          • $begingroup$
            @helios321 Right, I have made a correction.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:04










          • $begingroup$
            $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
            $endgroup$
            – Peter Szilas
            Jan 18 at 10:09












          • $begingroup$
            @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:14










          • $begingroup$
            KaviRamaMurthy.Fine.Thanks for update.
            $endgroup$
            – Peter Szilas
            Jan 18 at 11:44











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078031%2ffind-underset-x-y-to-0-0-textlim-exp-left-frac-left-x-y-righ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The limit is $0$. Let $0<epsilon <1$ and $delta=frac 1 {2ln (frac 1 {epsilon})}$. Note that $frac {|x-y|} {(x-y)^{2}} =frac 1 {|x-y|}$. Can you now show that $e^{-frac {|x-y|} {(x-y)^{2}}}<epsilon$ whenever $|x-y|<delta$? [Use the fact that $|(x,y)|<delta$ implies $|x-y| <|x|+|y| <2delta$].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
            $endgroup$
            – helios321
            Jan 18 at 9:56










          • $begingroup$
            @helios321 Right, I have made a correction.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:04










          • $begingroup$
            $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
            $endgroup$
            – Peter Szilas
            Jan 18 at 10:09












          • $begingroup$
            @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:14










          • $begingroup$
            KaviRamaMurthy.Fine.Thanks for update.
            $endgroup$
            – Peter Szilas
            Jan 18 at 11:44
















          1












          $begingroup$

          The limit is $0$. Let $0<epsilon <1$ and $delta=frac 1 {2ln (frac 1 {epsilon})}$. Note that $frac {|x-y|} {(x-y)^{2}} =frac 1 {|x-y|}$. Can you now show that $e^{-frac {|x-y|} {(x-y)^{2}}}<epsilon$ whenever $|x-y|<delta$? [Use the fact that $|(x,y)|<delta$ implies $|x-y| <|x|+|y| <2delta$].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
            $endgroup$
            – helios321
            Jan 18 at 9:56










          • $begingroup$
            @helios321 Right, I have made a correction.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:04










          • $begingroup$
            $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
            $endgroup$
            – Peter Szilas
            Jan 18 at 10:09












          • $begingroup$
            @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:14










          • $begingroup$
            KaviRamaMurthy.Fine.Thanks for update.
            $endgroup$
            – Peter Szilas
            Jan 18 at 11:44














          1












          1








          1





          $begingroup$

          The limit is $0$. Let $0<epsilon <1$ and $delta=frac 1 {2ln (frac 1 {epsilon})}$. Note that $frac {|x-y|} {(x-y)^{2}} =frac 1 {|x-y|}$. Can you now show that $e^{-frac {|x-y|} {(x-y)^{2}}}<epsilon$ whenever $|x-y|<delta$? [Use the fact that $|(x,y)|<delta$ implies $|x-y| <|x|+|y| <2delta$].






          share|cite|improve this answer











          $endgroup$



          The limit is $0$. Let $0<epsilon <1$ and $delta=frac 1 {2ln (frac 1 {epsilon})}$. Note that $frac {|x-y|} {(x-y)^{2}} =frac 1 {|x-y|}$. Can you now show that $e^{-frac {|x-y|} {(x-y)^{2}}}<epsilon$ whenever $|x-y|<delta$? [Use the fact that $|(x,y)|<delta$ implies $|x-y| <|x|+|y| <2delta$].







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 18 at 10:12

























          answered Jan 18 at 9:51









          Kavi Rama MurthyKavi Rama Murthy

          63.1k42362




          63.1k42362












          • $begingroup$
            Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
            $endgroup$
            – helios321
            Jan 18 at 9:56










          • $begingroup$
            @helios321 Right, I have made a correction.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:04










          • $begingroup$
            $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
            $endgroup$
            – Peter Szilas
            Jan 18 at 10:09












          • $begingroup$
            @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:14










          • $begingroup$
            KaviRamaMurthy.Fine.Thanks for update.
            $endgroup$
            – Peter Szilas
            Jan 18 at 11:44


















          • $begingroup$
            Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
            $endgroup$
            – helios321
            Jan 18 at 9:56










          • $begingroup$
            @helios321 Right, I have made a correction.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:04










          • $begingroup$
            $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
            $endgroup$
            – Peter Szilas
            Jan 18 at 10:09












          • $begingroup$
            @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
            $endgroup$
            – Kavi Rama Murthy
            Jan 18 at 10:14










          • $begingroup$
            KaviRamaMurthy.Fine.Thanks for update.
            $endgroup$
            – Peter Szilas
            Jan 18 at 11:44
















          $begingroup$
          Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
          $endgroup$
          – helios321
          Jan 18 at 9:56




          $begingroup$
          Don't we need to make $sqrt{x^2+y^2}<delta$ for the two dimensional case?
          $endgroup$
          – helios321
          Jan 18 at 9:56












          $begingroup$
          @helios321 Right, I have made a correction.
          $endgroup$
          – Kavi Rama Murthy
          Jan 18 at 10:04




          $begingroup$
          @helios321 Right, I have made a correction.
          $endgroup$
          – Kavi Rama Murthy
          Jan 18 at 10:04












          $begingroup$
          $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
          $endgroup$
          – Peter Szilas
          Jan 18 at 10:09






          $begingroup$
          $|x-y| =sqrt{x^2+y^2-2xy}$ ; and $x^2+y^2ge 2|yx| $ (AM-GM); then $|x-y| le sqrt{2(x^2+y^2)} =√2 sqrt{x^2+y^2}$, helps?
          $endgroup$
          – Peter Szilas
          Jan 18 at 10:09














          $begingroup$
          @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
          $endgroup$
          – Kavi Rama Murthy
          Jan 18 at 10:14




          $begingroup$
          @PeterSzilas I had typed $|x-y| <delta$ instead of $|(x,y)| <delta$. You don't require any of the inequalities you have stated. It is very elementary.
          $endgroup$
          – Kavi Rama Murthy
          Jan 18 at 10:14












          $begingroup$
          KaviRamaMurthy.Fine.Thanks for update.
          $endgroup$
          – Peter Szilas
          Jan 18 at 11:44




          $begingroup$
          KaviRamaMurthy.Fine.Thanks for update.
          $endgroup$
          – Peter Szilas
          Jan 18 at 11:44


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078031%2ffind-underset-x-y-to-0-0-textlim-exp-left-frac-left-x-y-righ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith