If $X$ is a real normed linear space, then $B(0,r)=r B(0,1)$
$begingroup$
If $X$ is a real normed linear space, I want to prove that $$B_{r}(0)=r B_{1}(0)$$
My proof
Let $zin rB(0,1)$, there exists $xin B(0,1)$ such that $z=rx$.
$$|z-0|=|rx-0|=r|x-0|<r$$
So, $zin B(0,r)$ and $$rB(0,1)subseteq B(0,r).$$
On the other hand, let $zin B(0,r)$, then $|z-0|<r$. This implies that
$$bigg|dfrac{z}{r}-0bigg|<1.$$
Thus, $dfrac{z}{r}in B(0,1)$ and there exists $xin B(0,1)$ such that
$$dfrac{z}{r}=xiff z=rx in rB(0,1)$$
Hence, $$ B(0,r) subseteq rB(0,1).$$
Therefore,
$$ B(0,r) = rB(0,1).$$
Question
Kindly help check if my proof is correct.
general-topology functional-analysis metric-spaces
$endgroup$
add a comment |
$begingroup$
If $X$ is a real normed linear space, I want to prove that $$B_{r}(0)=r B_{1}(0)$$
My proof
Let $zin rB(0,1)$, there exists $xin B(0,1)$ such that $z=rx$.
$$|z-0|=|rx-0|=r|x-0|<r$$
So, $zin B(0,r)$ and $$rB(0,1)subseteq B(0,r).$$
On the other hand, let $zin B(0,r)$, then $|z-0|<r$. This implies that
$$bigg|dfrac{z}{r}-0bigg|<1.$$
Thus, $dfrac{z}{r}in B(0,1)$ and there exists $xin B(0,1)$ such that
$$dfrac{z}{r}=xiff z=rx in rB(0,1)$$
Hence, $$ B(0,r) subseteq rB(0,1).$$
Therefore,
$$ B(0,r) = rB(0,1).$$
Question
Kindly help check if my proof is correct.
general-topology functional-analysis metric-spaces
$endgroup$
add a comment |
$begingroup$
If $X$ is a real normed linear space, I want to prove that $$B_{r}(0)=r B_{1}(0)$$
My proof
Let $zin rB(0,1)$, there exists $xin B(0,1)$ such that $z=rx$.
$$|z-0|=|rx-0|=r|x-0|<r$$
So, $zin B(0,r)$ and $$rB(0,1)subseteq B(0,r).$$
On the other hand, let $zin B(0,r)$, then $|z-0|<r$. This implies that
$$bigg|dfrac{z}{r}-0bigg|<1.$$
Thus, $dfrac{z}{r}in B(0,1)$ and there exists $xin B(0,1)$ such that
$$dfrac{z}{r}=xiff z=rx in rB(0,1)$$
Hence, $$ B(0,r) subseteq rB(0,1).$$
Therefore,
$$ B(0,r) = rB(0,1).$$
Question
Kindly help check if my proof is correct.
general-topology functional-analysis metric-spaces
$endgroup$
If $X$ is a real normed linear space, I want to prove that $$B_{r}(0)=r B_{1}(0)$$
My proof
Let $zin rB(0,1)$, there exists $xin B(0,1)$ such that $z=rx$.
$$|z-0|=|rx-0|=r|x-0|<r$$
So, $zin B(0,r)$ and $$rB(0,1)subseteq B(0,r).$$
On the other hand, let $zin B(0,r)$, then $|z-0|<r$. This implies that
$$bigg|dfrac{z}{r}-0bigg|<1.$$
Thus, $dfrac{z}{r}in B(0,1)$ and there exists $xin B(0,1)$ such that
$$dfrac{z}{r}=xiff z=rx in rB(0,1)$$
Hence, $$ B(0,r) subseteq rB(0,1).$$
Therefore,
$$ B(0,r) = rB(0,1).$$
Question
Kindly help check if my proof is correct.
general-topology functional-analysis metric-spaces
general-topology functional-analysis metric-spaces
edited Jan 18 at 14:02
Omojola Micheal
asked Jan 18 at 11:30


Omojola MichealOmojola Micheal
1,918324
1,918324
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The proof is totally fine. I would have written it thusly:
Suppose $r>0$.
Let $x in B_r(0)$. Then define $y=frac{1}{r}cdot x$. Then
$$|y-0| = |y|=frac{1}{r}|x|= frac{1}{r}|x-0|< frac{1}{r} cdot r = 1$$
so that $y in B_1(0)$ and as $rcdot y = r cdot (frac{1}{r}cdot x)= (r frac{1}{r}) cdot x = 1cdot x = x$, we have that $x in rB_1(0)$. So $B_r(0) subseteq rB_1(0)$.
On the other hand, if $xin rB_1(0)$ then $x=ry$ for some $y in B_1(0)$ and then
$$|x-0|=|x|=|ry| = r|y| < r cdot 1= r$$ and so $x in B_r(0)$. So the other inclusion $rB_1(0) subseteq B_r(0)$ also holds.
$endgroup$
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
add a comment |
$begingroup$
Your proof is fine. Everything is O.K.
$endgroup$
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078126%2fif-x-is-a-real-normed-linear-space-then-b0-r-r-b0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The proof is totally fine. I would have written it thusly:
Suppose $r>0$.
Let $x in B_r(0)$. Then define $y=frac{1}{r}cdot x$. Then
$$|y-0| = |y|=frac{1}{r}|x|= frac{1}{r}|x-0|< frac{1}{r} cdot r = 1$$
so that $y in B_1(0)$ and as $rcdot y = r cdot (frac{1}{r}cdot x)= (r frac{1}{r}) cdot x = 1cdot x = x$, we have that $x in rB_1(0)$. So $B_r(0) subseteq rB_1(0)$.
On the other hand, if $xin rB_1(0)$ then $x=ry$ for some $y in B_1(0)$ and then
$$|x-0|=|x|=|ry| = r|y| < r cdot 1= r$$ and so $x in B_r(0)$. So the other inclusion $rB_1(0) subseteq B_r(0)$ also holds.
$endgroup$
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
add a comment |
$begingroup$
The proof is totally fine. I would have written it thusly:
Suppose $r>0$.
Let $x in B_r(0)$. Then define $y=frac{1}{r}cdot x$. Then
$$|y-0| = |y|=frac{1}{r}|x|= frac{1}{r}|x-0|< frac{1}{r} cdot r = 1$$
so that $y in B_1(0)$ and as $rcdot y = r cdot (frac{1}{r}cdot x)= (r frac{1}{r}) cdot x = 1cdot x = x$, we have that $x in rB_1(0)$. So $B_r(0) subseteq rB_1(0)$.
On the other hand, if $xin rB_1(0)$ then $x=ry$ for some $y in B_1(0)$ and then
$$|x-0|=|x|=|ry| = r|y| < r cdot 1= r$$ and so $x in B_r(0)$. So the other inclusion $rB_1(0) subseteq B_r(0)$ also holds.
$endgroup$
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
add a comment |
$begingroup$
The proof is totally fine. I would have written it thusly:
Suppose $r>0$.
Let $x in B_r(0)$. Then define $y=frac{1}{r}cdot x$. Then
$$|y-0| = |y|=frac{1}{r}|x|= frac{1}{r}|x-0|< frac{1}{r} cdot r = 1$$
so that $y in B_1(0)$ and as $rcdot y = r cdot (frac{1}{r}cdot x)= (r frac{1}{r}) cdot x = 1cdot x = x$, we have that $x in rB_1(0)$. So $B_r(0) subseteq rB_1(0)$.
On the other hand, if $xin rB_1(0)$ then $x=ry$ for some $y in B_1(0)$ and then
$$|x-0|=|x|=|ry| = r|y| < r cdot 1= r$$ and so $x in B_r(0)$. So the other inclusion $rB_1(0) subseteq B_r(0)$ also holds.
$endgroup$
The proof is totally fine. I would have written it thusly:
Suppose $r>0$.
Let $x in B_r(0)$. Then define $y=frac{1}{r}cdot x$. Then
$$|y-0| = |y|=frac{1}{r}|x|= frac{1}{r}|x-0|< frac{1}{r} cdot r = 1$$
so that $y in B_1(0)$ and as $rcdot y = r cdot (frac{1}{r}cdot x)= (r frac{1}{r}) cdot x = 1cdot x = x$, we have that $x in rB_1(0)$. So $B_r(0) subseteq rB_1(0)$.
On the other hand, if $xin rB_1(0)$ then $x=ry$ for some $y in B_1(0)$ and then
$$|x-0|=|x|=|ry| = r|y| < r cdot 1= r$$ and so $x in B_r(0)$. So the other inclusion $rB_1(0) subseteq B_r(0)$ also holds.
answered Jan 18 at 18:05
Henno BrandsmaHenno Brandsma
111k348118
111k348118
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
add a comment |
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
$begingroup$
Thanks a lot, Henno Brandsma! (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 20:23
add a comment |
$begingroup$
Your proof is fine. Everything is O.K.
$endgroup$
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
add a comment |
$begingroup$
Your proof is fine. Everything is O.K.
$endgroup$
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
add a comment |
$begingroup$
Your proof is fine. Everything is O.K.
$endgroup$
Your proof is fine. Everything is O.K.
answered Jan 18 at 11:45


FredFred
47k1848
47k1848
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
add a comment |
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
$begingroup$
Thanks a lot (+1)
$endgroup$
– Omojola Micheal
Jan 18 at 15:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078126%2fif-x-is-a-real-normed-linear-space-then-b0-r-r-b0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown