cumulative distribution function. Basic problem












0












$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



Where is the mistake ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why do you think there is a mistake?
    $endgroup$
    – Henry
    Jan 25 at 23:23










  • $begingroup$
    Looks good to me.
    $endgroup$
    – herb steinberg
    Jan 26 at 0:55










  • $begingroup$
    We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
    $endgroup$
    – Lucian
    Jan 26 at 8:21


















0












$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



Where is the mistake ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Why do you think there is a mistake?
    $endgroup$
    – Henry
    Jan 25 at 23:23










  • $begingroup$
    Looks good to me.
    $endgroup$
    – herb steinberg
    Jan 26 at 0:55










  • $begingroup$
    We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
    $endgroup$
    – Lucian
    Jan 26 at 8:21
















0












0








0





$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



Where is the mistake ?










share|cite|improve this question











$endgroup$




Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



Where is the mistake ?







probability






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 8:21







Lucian

















asked Jan 25 at 23:06









LucianLucian

396




396








  • 2




    $begingroup$
    Why do you think there is a mistake?
    $endgroup$
    – Henry
    Jan 25 at 23:23










  • $begingroup$
    Looks good to me.
    $endgroup$
    – herb steinberg
    Jan 26 at 0:55










  • $begingroup$
    We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
    $endgroup$
    – Lucian
    Jan 26 at 8:21
















  • 2




    $begingroup$
    Why do you think there is a mistake?
    $endgroup$
    – Henry
    Jan 25 at 23:23










  • $begingroup$
    Looks good to me.
    $endgroup$
    – herb steinberg
    Jan 26 at 0:55










  • $begingroup$
    We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
    $endgroup$
    – Lucian
    Jan 26 at 8:21










2




2




$begingroup$
Why do you think there is a mistake?
$endgroup$
– Henry
Jan 25 at 23:23




$begingroup$
Why do you think there is a mistake?
$endgroup$
– Henry
Jan 25 at 23:23












$begingroup$
Looks good to me.
$endgroup$
– herb steinberg
Jan 26 at 0:55




$begingroup$
Looks good to me.
$endgroup$
– herb steinberg
Jan 26 at 0:55












$begingroup$
We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
$endgroup$
– Lucian
Jan 26 at 8:21






$begingroup$
We can calculate what's the probability density function of Y and we have : For t$notin$[0,2) we have 0 For t$in$[0,2) we have 1/5. Then $int_{-{displaystyle infty}}^{{displaystyle infty}}$ ϱ$^Y$=$frac{2}{5}$
$endgroup$
– Lucian
Jan 26 at 8:21












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087710%2fcumulative-distribution-function-basic-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087710%2fcumulative-distribution-function-basic-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter