Taylor series of $1/(e^x-a)$ about 0?












0












$begingroup$


I know what the Taylor series for $frac{1}{e^x-1}$ about 0 is, and it's a function of Bernoulli numbers.



However, $frac{1}{e^x-a}$ seems to be much more convoluted. Does anybody know the general term of this series?



If it exists, finding it on Google is challenging, due to the mathematical notation.










share|cite|improve this question









$endgroup$












  • $begingroup$
    If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
    $endgroup$
    – Paras Khosla
    Jan 26 at 7:41












  • $begingroup$
    @ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
    $endgroup$
    – JR Sousa
    Jan 26 at 7:52


















0












$begingroup$


I know what the Taylor series for $frac{1}{e^x-1}$ about 0 is, and it's a function of Bernoulli numbers.



However, $frac{1}{e^x-a}$ seems to be much more convoluted. Does anybody know the general term of this series?



If it exists, finding it on Google is challenging, due to the mathematical notation.










share|cite|improve this question









$endgroup$












  • $begingroup$
    If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
    $endgroup$
    – Paras Khosla
    Jan 26 at 7:41












  • $begingroup$
    @ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
    $endgroup$
    – JR Sousa
    Jan 26 at 7:52
















0












0








0


1



$begingroup$


I know what the Taylor series for $frac{1}{e^x-1}$ about 0 is, and it's a function of Bernoulli numbers.



However, $frac{1}{e^x-a}$ seems to be much more convoluted. Does anybody know the general term of this series?



If it exists, finding it on Google is challenging, due to the mathematical notation.










share|cite|improve this question









$endgroup$




I know what the Taylor series for $frac{1}{e^x-1}$ about 0 is, and it's a function of Bernoulli numbers.



However, $frac{1}{e^x-a}$ seems to be much more convoluted. Does anybody know the general term of this series?



If it exists, finding it on Google is challenging, due to the mathematical notation.







taylor-expansion closed-form






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 26 at 7:35









JR SousaJR Sousa

1009




1009












  • $begingroup$
    If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
    $endgroup$
    – Paras Khosla
    Jan 26 at 7:41












  • $begingroup$
    @ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
    $endgroup$
    – JR Sousa
    Jan 26 at 7:52




















  • $begingroup$
    If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
    $endgroup$
    – Paras Khosla
    Jan 26 at 7:41












  • $begingroup$
    @ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
    $endgroup$
    – JR Sousa
    Jan 26 at 7:52


















$begingroup$
If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
$endgroup$
– Paras Khosla
Jan 26 at 7:41






$begingroup$
If you have trouble Googling it, consider using a calculator. I used Symbolab and found Maclaurin series of $dfrac{1}{e^x-a}$ as:$$dfrac{1}{1-a}-dfrac{1}{1-a^2}x+dfrac{a+1}{2(1-a)^3}x^2-+cdots$$
$endgroup$
– Paras Khosla
Jan 26 at 7:41














$begingroup$
@ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
$endgroup$
– JR Sousa
Jan 26 at 7:52






$begingroup$
@ParasKhosla What is general term? I can easily produce the series with Mathematica, but I need to know the general term, not just the first few terms.
$endgroup$
– JR Sousa
Jan 26 at 7:52












2 Answers
2






active

oldest

votes


















2












$begingroup$

So, maybe the Binomial Theorem is needed.
See https://en.wikipedia.org/wiki/Binomial_theorem.
Actually, we can obtain that
begin{align}
(e^x-a)^{-1} &= -a^{-1}sum_{k=0}^{infty} left(frac{e^x}{a}right)^k\
&=-frac{1}{a} sum_{k=0}^{infty} frac{1}{a^k} sum_{n=0}^{infty} frac{(kx)^n}{n!}\
&=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
    $endgroup$
    – JR Sousa
    Jan 26 at 8:21



















1












$begingroup$

Starting from @Aaron Jia's answer
$$frac{1}{e^x-a}=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n$$ let
$$c_n=sum_{k=0}^{infty} frac{k^n}{a^{k+1}}=frac{1}{a},Phi left(frac{1}{a},-n,0right) $$ where appears the Hurwitz-Lerch transcendent function.



So,



$$frac{1}{e^x-a}=sum_{n=0}^{infty} -frac{Phi left(frac{1}{a},-n,0right)}{a, n!} x^n$$ and the coefficients are then
$$left(
begin{array}{cc}
0 & frac{1}{1-a} \
1 & -frac{1}{(a-1)^2} \
2 & frac{-a-1}{2 (a-1)^3} \
3 & frac{-a^2-4 a-1}{6 (a-1)^4} \
4 & frac{-a^3-11 a^2-11 a-1}{24 (a-1)^5} \
5 & frac{-a^4-26 a^3-66 a^2-26 a-1}{120 (a-1)^6}
end{array}
right)$$
to be compared to the expansion
$$frac{1}{1-a}-frac{x}{(a-1)^2}+frac{(-a-1) x^2}{2 (a-1)^3}+frac{left(-a^2-4
a-1right) x^3}{6 (a-1)^4}+frac{left(-a^3-11 a^2-11 a-1right) x^4}{24
(a-1)^5}+frac{left(-a^4-26 a^3-66 a^2-26 a-1right) x^5}{120
(a-1)^6}+Oleft(x^6right)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The first term, n=0, is 0, so the above needs a little correction.
    $endgroup$
    – JR Sousa
    Jan 26 at 20:45










  • $begingroup$
    @JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 1:18










  • $begingroup$
    You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
    $endgroup$
    – JR Sousa
    Jan 28 at 16:22













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087999%2ftaylor-series-of-1-ex-a-about-0%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

So, maybe the Binomial Theorem is needed.
See https://en.wikipedia.org/wiki/Binomial_theorem.
Actually, we can obtain that
begin{align}
(e^x-a)^{-1} &= -a^{-1}sum_{k=0}^{infty} left(frac{e^x}{a}right)^k\
&=-frac{1}{a} sum_{k=0}^{infty} frac{1}{a^k} sum_{n=0}^{infty} frac{(kx)^n}{n!}\
&=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
    $endgroup$
    – JR Sousa
    Jan 26 at 8:21
















2












$begingroup$

So, maybe the Binomial Theorem is needed.
See https://en.wikipedia.org/wiki/Binomial_theorem.
Actually, we can obtain that
begin{align}
(e^x-a)^{-1} &= -a^{-1}sum_{k=0}^{infty} left(frac{e^x}{a}right)^k\
&=-frac{1}{a} sum_{k=0}^{infty} frac{1}{a^k} sum_{n=0}^{infty} frac{(kx)^n}{n!}\
&=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n.
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
    $endgroup$
    – JR Sousa
    Jan 26 at 8:21














2












2








2





$begingroup$

So, maybe the Binomial Theorem is needed.
See https://en.wikipedia.org/wiki/Binomial_theorem.
Actually, we can obtain that
begin{align}
(e^x-a)^{-1} &= -a^{-1}sum_{k=0}^{infty} left(frac{e^x}{a}right)^k\
&=-frac{1}{a} sum_{k=0}^{infty} frac{1}{a^k} sum_{n=0}^{infty} frac{(kx)^n}{n!}\
&=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n.
end{align}






share|cite|improve this answer









$endgroup$



So, maybe the Binomial Theorem is needed.
See https://en.wikipedia.org/wiki/Binomial_theorem.
Actually, we can obtain that
begin{align}
(e^x-a)^{-1} &= -a^{-1}sum_{k=0}^{infty} left(frac{e^x}{a}right)^k\
&=-frac{1}{a} sum_{k=0}^{infty} frac{1}{a^k} sum_{n=0}^{infty} frac{(kx)^n}{n!}\
&=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n.
end{align}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 26 at 8:13









Aaron JiaAaron Jia

383




383












  • $begingroup$
    That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
    $endgroup$
    – JR Sousa
    Jan 26 at 8:21


















  • $begingroup$
    That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
    $endgroup$
    – JR Sousa
    Jan 26 at 8:21
















$begingroup$
That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
$endgroup$
– JR Sousa
Jan 26 at 8:21




$begingroup$
That is not it yet because the second sum is infinite, and I want it to be a closed-form, right?
$endgroup$
– JR Sousa
Jan 26 at 8:21











1












$begingroup$

Starting from @Aaron Jia's answer
$$frac{1}{e^x-a}=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n$$ let
$$c_n=sum_{k=0}^{infty} frac{k^n}{a^{k+1}}=frac{1}{a},Phi left(frac{1}{a},-n,0right) $$ where appears the Hurwitz-Lerch transcendent function.



So,



$$frac{1}{e^x-a}=sum_{n=0}^{infty} -frac{Phi left(frac{1}{a},-n,0right)}{a, n!} x^n$$ and the coefficients are then
$$left(
begin{array}{cc}
0 & frac{1}{1-a} \
1 & -frac{1}{(a-1)^2} \
2 & frac{-a-1}{2 (a-1)^3} \
3 & frac{-a^2-4 a-1}{6 (a-1)^4} \
4 & frac{-a^3-11 a^2-11 a-1}{24 (a-1)^5} \
5 & frac{-a^4-26 a^3-66 a^2-26 a-1}{120 (a-1)^6}
end{array}
right)$$
to be compared to the expansion
$$frac{1}{1-a}-frac{x}{(a-1)^2}+frac{(-a-1) x^2}{2 (a-1)^3}+frac{left(-a^2-4
a-1right) x^3}{6 (a-1)^4}+frac{left(-a^3-11 a^2-11 a-1right) x^4}{24
(a-1)^5}+frac{left(-a^4-26 a^3-66 a^2-26 a-1right) x^5}{120
(a-1)^6}+Oleft(x^6right)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The first term, n=0, is 0, so the above needs a little correction.
    $endgroup$
    – JR Sousa
    Jan 26 at 20:45










  • $begingroup$
    @JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 1:18










  • $begingroup$
    You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
    $endgroup$
    – JR Sousa
    Jan 28 at 16:22


















1












$begingroup$

Starting from @Aaron Jia's answer
$$frac{1}{e^x-a}=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n$$ let
$$c_n=sum_{k=0}^{infty} frac{k^n}{a^{k+1}}=frac{1}{a},Phi left(frac{1}{a},-n,0right) $$ where appears the Hurwitz-Lerch transcendent function.



So,



$$frac{1}{e^x-a}=sum_{n=0}^{infty} -frac{Phi left(frac{1}{a},-n,0right)}{a, n!} x^n$$ and the coefficients are then
$$left(
begin{array}{cc}
0 & frac{1}{1-a} \
1 & -frac{1}{(a-1)^2} \
2 & frac{-a-1}{2 (a-1)^3} \
3 & frac{-a^2-4 a-1}{6 (a-1)^4} \
4 & frac{-a^3-11 a^2-11 a-1}{24 (a-1)^5} \
5 & frac{-a^4-26 a^3-66 a^2-26 a-1}{120 (a-1)^6}
end{array}
right)$$
to be compared to the expansion
$$frac{1}{1-a}-frac{x}{(a-1)^2}+frac{(-a-1) x^2}{2 (a-1)^3}+frac{left(-a^2-4
a-1right) x^3}{6 (a-1)^4}+frac{left(-a^3-11 a^2-11 a-1right) x^4}{24
(a-1)^5}+frac{left(-a^4-26 a^3-66 a^2-26 a-1right) x^5}{120
(a-1)^6}+Oleft(x^6right)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The first term, n=0, is 0, so the above needs a little correction.
    $endgroup$
    – JR Sousa
    Jan 26 at 20:45










  • $begingroup$
    @JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 1:18










  • $begingroup$
    You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
    $endgroup$
    – JR Sousa
    Jan 28 at 16:22
















1












1








1





$begingroup$

Starting from @Aaron Jia's answer
$$frac{1}{e^x-a}=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n$$ let
$$c_n=sum_{k=0}^{infty} frac{k^n}{a^{k+1}}=frac{1}{a},Phi left(frac{1}{a},-n,0right) $$ where appears the Hurwitz-Lerch transcendent function.



So,



$$frac{1}{e^x-a}=sum_{n=0}^{infty} -frac{Phi left(frac{1}{a},-n,0right)}{a, n!} x^n$$ and the coefficients are then
$$left(
begin{array}{cc}
0 & frac{1}{1-a} \
1 & -frac{1}{(a-1)^2} \
2 & frac{-a-1}{2 (a-1)^3} \
3 & frac{-a^2-4 a-1}{6 (a-1)^4} \
4 & frac{-a^3-11 a^2-11 a-1}{24 (a-1)^5} \
5 & frac{-a^4-26 a^3-66 a^2-26 a-1}{120 (a-1)^6}
end{array}
right)$$
to be compared to the expansion
$$frac{1}{1-a}-frac{x}{(a-1)^2}+frac{(-a-1) x^2}{2 (a-1)^3}+frac{left(-a^2-4
a-1right) x^3}{6 (a-1)^4}+frac{left(-a^3-11 a^2-11 a-1right) x^4}{24
(a-1)^5}+frac{left(-a^4-26 a^3-66 a^2-26 a-1right) x^5}{120
(a-1)^6}+Oleft(x^6right)$$






share|cite|improve this answer











$endgroup$



Starting from @Aaron Jia's answer
$$frac{1}{e^x-a}=-sum_{n=0}^{infty} left(frac{1}{n!} sum_{k=0}^{infty} frac{k^n}{a^{k+1}} right)x^n$$ let
$$c_n=sum_{k=0}^{infty} frac{k^n}{a^{k+1}}=frac{1}{a},Phi left(frac{1}{a},-n,0right) $$ where appears the Hurwitz-Lerch transcendent function.



So,



$$frac{1}{e^x-a}=sum_{n=0}^{infty} -frac{Phi left(frac{1}{a},-n,0right)}{a, n!} x^n$$ and the coefficients are then
$$left(
begin{array}{cc}
0 & frac{1}{1-a} \
1 & -frac{1}{(a-1)^2} \
2 & frac{-a-1}{2 (a-1)^3} \
3 & frac{-a^2-4 a-1}{6 (a-1)^4} \
4 & frac{-a^3-11 a^2-11 a-1}{24 (a-1)^5} \
5 & frac{-a^4-26 a^3-66 a^2-26 a-1}{120 (a-1)^6}
end{array}
right)$$
to be compared to the expansion
$$frac{1}{1-a}-frac{x}{(a-1)^2}+frac{(-a-1) x^2}{2 (a-1)^3}+frac{left(-a^2-4
a-1right) x^3}{6 (a-1)^4}+frac{left(-a^3-11 a^2-11 a-1right) x^4}{24
(a-1)^5}+frac{left(-a^4-26 a^3-66 a^2-26 a-1right) x^5}{120
(a-1)^6}+Oleft(x^6right)$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 27 at 1:20

























answered Jan 26 at 9:39









Claude LeiboviciClaude Leibovici

124k1158135




124k1158135












  • $begingroup$
    The first term, n=0, is 0, so the above needs a little correction.
    $endgroup$
    – JR Sousa
    Jan 26 at 20:45










  • $begingroup$
    @JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 1:18










  • $begingroup$
    You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
    $endgroup$
    – JR Sousa
    Jan 28 at 16:22




















  • $begingroup$
    The first term, n=0, is 0, so the above needs a little correction.
    $endgroup$
    – JR Sousa
    Jan 26 at 20:45










  • $begingroup$
    @JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 1:18










  • $begingroup$
    You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
    $endgroup$
    – JR Sousa
    Jan 28 at 16:22


















$begingroup$
The first term, n=0, is 0, so the above needs a little correction.
$endgroup$
– JR Sousa
Jan 26 at 20:45




$begingroup$
The first term, n=0, is 0, so the above needs a little correction.
$endgroup$
– JR Sousa
Jan 26 at 20:45












$begingroup$
@JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 1:18




$begingroup$
@JRS. I do not agree : it is not $0$ so it does not need any little correction. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 1:18












$begingroup$
You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
$endgroup$
– JR Sousa
Jan 28 at 16:22






$begingroup$
You didn't understand what I said, I checked it on Mathematica, your $c_0$ gives the coefficient of $x$, instead of the independent term, your $c_1$ gives the coefficient of $x^2$, and so on. Should be $1/a*phi(1/a,-n-1,0)$. But, whatever, if you wanna stay ignorant, be my guest.
$endgroup$
– JR Sousa
Jan 28 at 16:22




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087999%2ftaylor-series-of-1-ex-a-about-0%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$