Finding limit as $x rightarrow 0$
$begingroup$
The question asks to find
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
I solved it by applying the L'Hopital rule since it is of the form $frac{0}{0}$ and then once I differentiated we get $$lim_{x rightarrow0} left(frac{frac{d sin x^n}{dx}}{frac{ left(d sin x right)^m}{dx}}right),
$$
which gives us
$$
lim_{x rightarrow0} frac{ncos x cdot x^{n-1}}{left(m sin xright)^{m-1} cos x}.
$$
Now this gives us a function of the form $$frac{n x^{n-1}}{left(m sin xright)^{m-1}},
$$
which means that since $n>m$ now, we can keep differentiating the denominator and we will eventually get something of the form $frac{0}{k}$ which means the limit must be $0$.
This is how I have gone about it. I have $2$ questions:
$1.$ Is there a better method than this to solve it?
$2.$ Can we find out the limit of this function if $m>n$?
calculus limits
$endgroup$
add a comment |
$begingroup$
The question asks to find
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
I solved it by applying the L'Hopital rule since it is of the form $frac{0}{0}$ and then once I differentiated we get $$lim_{x rightarrow0} left(frac{frac{d sin x^n}{dx}}{frac{ left(d sin x right)^m}{dx}}right),
$$
which gives us
$$
lim_{x rightarrow0} frac{ncos x cdot x^{n-1}}{left(m sin xright)^{m-1} cos x}.
$$
Now this gives us a function of the form $$frac{n x^{n-1}}{left(m sin xright)^{m-1}},
$$
which means that since $n>m$ now, we can keep differentiating the denominator and we will eventually get something of the form $frac{0}{k}$ which means the limit must be $0$.
This is how I have gone about it. I have $2$ questions:
$1.$ Is there a better method than this to solve it?
$2.$ Can we find out the limit of this function if $m>n$?
calculus limits
$endgroup$
add a comment |
$begingroup$
The question asks to find
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
I solved it by applying the L'Hopital rule since it is of the form $frac{0}{0}$ and then once I differentiated we get $$lim_{x rightarrow0} left(frac{frac{d sin x^n}{dx}}{frac{ left(d sin x right)^m}{dx}}right),
$$
which gives us
$$
lim_{x rightarrow0} frac{ncos x cdot x^{n-1}}{left(m sin xright)^{m-1} cos x}.
$$
Now this gives us a function of the form $$frac{n x^{n-1}}{left(m sin xright)^{m-1}},
$$
which means that since $n>m$ now, we can keep differentiating the denominator and we will eventually get something of the form $frac{0}{k}$ which means the limit must be $0$.
This is how I have gone about it. I have $2$ questions:
$1.$ Is there a better method than this to solve it?
$2.$ Can we find out the limit of this function if $m>n$?
calculus limits
$endgroup$
The question asks to find
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
I solved it by applying the L'Hopital rule since it is of the form $frac{0}{0}$ and then once I differentiated we get $$lim_{x rightarrow0} left(frac{frac{d sin x^n}{dx}}{frac{ left(d sin x right)^m}{dx}}right),
$$
which gives us
$$
lim_{x rightarrow0} frac{ncos x cdot x^{n-1}}{left(m sin xright)^{m-1} cos x}.
$$
Now this gives us a function of the form $$frac{n x^{n-1}}{left(m sin xright)^{m-1}},
$$
which means that since $n>m$ now, we can keep differentiating the denominator and we will eventually get something of the form $frac{0}{k}$ which means the limit must be $0$.
This is how I have gone about it. I have $2$ questions:
$1.$ Is there a better method than this to solve it?
$2.$ Can we find out the limit of this function if $m>n$?
calculus limits
calculus limits
edited Jan 26 at 8:35
Mee Seong Im
2,8151617
2,8151617
asked Jan 26 at 8:20
Prakhar NagpalPrakhar Nagpal
752318
752318
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Write the function as follows:
$$ frac{ sin x^n }{ x^n } cdot frac{x^m}{sin^m x} cdot x^{n-m}$$
Now, in the limit we obtain $1 cdot 1^m cdot 0 = 0 $ since $n-m>0$. We have used the elementary fact that
$$ lim_{x to 0} frac{ sin x }{x} = 1 $$
$endgroup$
add a comment |
$begingroup$
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
$$= lim limits_{x rightarrow 0} frac{x^n (1 - frac{x^{2n}}{3!}dots)}{x^m[ 1 - frac{x^2}{3!} dots]^m} = limlimits_{x rightarrow0} x^{n-m} =0$$
By the way, $sin x = x = frac {x^3}{3!} + frac{x^5}{5!} dots$
and $cos x = 1 - frac {x^2}{2!} + frac{x^4}{4!} dots$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088018%2ffinding-limit-as-x-rightarrow-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the function as follows:
$$ frac{ sin x^n }{ x^n } cdot frac{x^m}{sin^m x} cdot x^{n-m}$$
Now, in the limit we obtain $1 cdot 1^m cdot 0 = 0 $ since $n-m>0$. We have used the elementary fact that
$$ lim_{x to 0} frac{ sin x }{x} = 1 $$
$endgroup$
add a comment |
$begingroup$
Write the function as follows:
$$ frac{ sin x^n }{ x^n } cdot frac{x^m}{sin^m x} cdot x^{n-m}$$
Now, in the limit we obtain $1 cdot 1^m cdot 0 = 0 $ since $n-m>0$. We have used the elementary fact that
$$ lim_{x to 0} frac{ sin x }{x} = 1 $$
$endgroup$
add a comment |
$begingroup$
Write the function as follows:
$$ frac{ sin x^n }{ x^n } cdot frac{x^m}{sin^m x} cdot x^{n-m}$$
Now, in the limit we obtain $1 cdot 1^m cdot 0 = 0 $ since $n-m>0$. We have used the elementary fact that
$$ lim_{x to 0} frac{ sin x }{x} = 1 $$
$endgroup$
Write the function as follows:
$$ frac{ sin x^n }{ x^n } cdot frac{x^m}{sin^m x} cdot x^{n-m}$$
Now, in the limit we obtain $1 cdot 1^m cdot 0 = 0 $ since $n-m>0$. We have used the elementary fact that
$$ lim_{x to 0} frac{ sin x }{x} = 1 $$
answered Jan 26 at 8:24
Jimmy SabaterJimmy Sabater
3,054325
3,054325
add a comment |
add a comment |
$begingroup$
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
$$= lim limits_{x rightarrow 0} frac{x^n (1 - frac{x^{2n}}{3!}dots)}{x^m[ 1 - frac{x^2}{3!} dots]^m} = limlimits_{x rightarrow0} x^{n-m} =0$$
By the way, $sin x = x = frac {x^3}{3!} + frac{x^5}{5!} dots$
and $cos x = 1 - frac {x^2}{2!} + frac{x^4}{4!} dots$
$endgroup$
add a comment |
$begingroup$
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
$$= lim limits_{x rightarrow 0} frac{x^n (1 - frac{x^{2n}}{3!}dots)}{x^m[ 1 - frac{x^2}{3!} dots]^m} = limlimits_{x rightarrow0} x^{n-m} =0$$
By the way, $sin x = x = frac {x^3}{3!} + frac{x^5}{5!} dots$
and $cos x = 1 - frac {x^2}{2!} + frac{x^4}{4!} dots$
$endgroup$
add a comment |
$begingroup$
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
$$= lim limits_{x rightarrow 0} frac{x^n (1 - frac{x^{2n}}{3!}dots)}{x^m[ 1 - frac{x^2}{3!} dots]^m} = limlimits_{x rightarrow0} x^{n-m} =0$$
By the way, $sin x = x = frac {x^3}{3!} + frac{x^5}{5!} dots$
and $cos x = 1 - frac {x^2}{2!} + frac{x^4}{4!} dots$
$endgroup$
$$lim _{x rightarrow 0} dfrac{sin x^n}{left(sin xright)^m} ;;;forall; m<n$$
$$= lim limits_{x rightarrow 0} frac{x^n (1 - frac{x^{2n}}{3!}dots)}{x^m[ 1 - frac{x^2}{3!} dots]^m} = limlimits_{x rightarrow0} x^{n-m} =0$$
By the way, $sin x = x = frac {x^3}{3!} + frac{x^5}{5!} dots$
and $cos x = 1 - frac {x^2}{2!} + frac{x^4}{4!} dots$
edited Jan 27 at 12:51
answered Jan 27 at 12:45
Abhas Kumar SinhaAbhas Kumar Sinha
304115
304115
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088018%2ffinding-limit-as-x-rightarrow-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown