If x,y and z are positive integers and $frac 1x + frac 1y = frac 1z$ then $sqrt{x^2+y^2+z^2}$ is rational.












3












$begingroup$


To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)










share|cite|improve this question











$endgroup$












  • $begingroup$
    exactly @астонвіллаолофмэллбэрг
    $endgroup$
    – Mary Tom
    Jan 26 at 7:36










  • $begingroup$
    no way , but did you check x=y=z=1 @ shelby
    $endgroup$
    – Mary Tom
    Jan 26 at 7:37












  • $begingroup$
    so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
    $endgroup$
    – Mary Tom
    Jan 26 at 7:43










  • $begingroup$
    Seen the edited question.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 26 at 7:49
















3












$begingroup$


To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)










share|cite|improve this question











$endgroup$












  • $begingroup$
    exactly @астонвіллаолофмэллбэрг
    $endgroup$
    – Mary Tom
    Jan 26 at 7:36










  • $begingroup$
    no way , but did you check x=y=z=1 @ shelby
    $endgroup$
    – Mary Tom
    Jan 26 at 7:37












  • $begingroup$
    so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
    $endgroup$
    – Mary Tom
    Jan 26 at 7:43










  • $begingroup$
    Seen the edited question.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 26 at 7:49














3












3








3





$begingroup$


To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)










share|cite|improve this question











$endgroup$




To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)







polynomials radicals rational-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 9:33









Michael Rozenberg

108k1895200




108k1895200










asked Jan 26 at 7:33









Mary TomMary Tom

326




326












  • $begingroup$
    exactly @астонвіллаолофмэллбэрг
    $endgroup$
    – Mary Tom
    Jan 26 at 7:36










  • $begingroup$
    no way , but did you check x=y=z=1 @ shelby
    $endgroup$
    – Mary Tom
    Jan 26 at 7:37












  • $begingroup$
    so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
    $endgroup$
    – Mary Tom
    Jan 26 at 7:43










  • $begingroup$
    Seen the edited question.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 26 at 7:49


















  • $begingroup$
    exactly @астонвіллаолофмэллбэрг
    $endgroup$
    – Mary Tom
    Jan 26 at 7:36










  • $begingroup$
    no way , but did you check x=y=z=1 @ shelby
    $endgroup$
    – Mary Tom
    Jan 26 at 7:37












  • $begingroup$
    so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
    $endgroup$
    – Mary Tom
    Jan 26 at 7:43










  • $begingroup$
    Seen the edited question.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 26 at 7:49
















$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36




$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36












$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37






$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37














$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43




$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43












$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49




$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49










3 Answers
3






active

oldest

votes


















2












$begingroup$

The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)



begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}



Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I just love @steven gregory's solution it is so elegantly proved!
    $endgroup$
    – Mary Tom
    Jan 26 at 8:44



















4












$begingroup$

Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$



    So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Are you happy now? +1
      $endgroup$
      – Maria Mazur
      Jan 26 at 12:04










    • $begingroup$
      I gave you a +1 too.
      $endgroup$
      – steven gregory
      Jan 28 at 14:02











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087996%2fif-x-y-and-z-are-positive-integers-and-frac-1x-frac-1y-frac-1z-then-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
    (See this)



    begin{align}
    x &= kp(p+q) \
    y &= kq(p+q) \
    z &= kpq
    end{align}



    Then
    begin{align}
    dfrac{x^2+y^2+z^2}{k^2}
    &= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
    &= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
    &= left( begin{array}{l}
    p^4 &+ &p^3q &+ &p^2q^2 &+ \
    & &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
    & & &+ &p^2q^2 &+ &pq^3 &+ &q^4
    end{array} right) \
    &= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
    &= (p^2 + pq + q^2)^2
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I just love @steven gregory's solution it is so elegantly proved!
      $endgroup$
      – Mary Tom
      Jan 26 at 8:44
















    2












    $begingroup$

    The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
    (See this)



    begin{align}
    x &= kp(p+q) \
    y &= kq(p+q) \
    z &= kpq
    end{align}



    Then
    begin{align}
    dfrac{x^2+y^2+z^2}{k^2}
    &= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
    &= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
    &= left( begin{array}{l}
    p^4 &+ &p^3q &+ &p^2q^2 &+ \
    & &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
    & & &+ &p^2q^2 &+ &pq^3 &+ &q^4
    end{array} right) \
    &= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
    &= (p^2 + pq + q^2)^2
    end{align}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I just love @steven gregory's solution it is so elegantly proved!
      $endgroup$
      – Mary Tom
      Jan 26 at 8:44














    2












    2








    2





    $begingroup$

    The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
    (See this)



    begin{align}
    x &= kp(p+q) \
    y &= kq(p+q) \
    z &= kpq
    end{align}



    Then
    begin{align}
    dfrac{x^2+y^2+z^2}{k^2}
    &= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
    &= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
    &= left( begin{array}{l}
    p^4 &+ &p^3q &+ &p^2q^2 &+ \
    & &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
    & & &+ &p^2q^2 &+ &pq^3 &+ &q^4
    end{array} right) \
    &= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
    &= (p^2 + pq + q^2)^2
    end{align}






    share|cite|improve this answer











    $endgroup$



    The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
    (See this)



    begin{align}
    x &= kp(p+q) \
    y &= kq(p+q) \
    z &= kpq
    end{align}



    Then
    begin{align}
    dfrac{x^2+y^2+z^2}{k^2}
    &= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
    &= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
    &= left( begin{array}{l}
    p^4 &+ &p^3q &+ &p^2q^2 &+ \
    & &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
    & & &+ &p^2q^2 &+ &pq^3 &+ &q^4
    end{array} right) \
    &= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
    &= (p^2 + pq + q^2)^2
    end{align}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 26 at 8:32

























    answered Jan 26 at 8:20









    steven gregorysteven gregory

    18.3k32358




    18.3k32358












    • $begingroup$
      I just love @steven gregory's solution it is so elegantly proved!
      $endgroup$
      – Mary Tom
      Jan 26 at 8:44


















    • $begingroup$
      I just love @steven gregory's solution it is so elegantly proved!
      $endgroup$
      – Mary Tom
      Jan 26 at 8:44
















    $begingroup$
    I just love @steven gregory's solution it is so elegantly proved!
    $endgroup$
    – Mary Tom
    Jan 26 at 8:44




    $begingroup$
    I just love @steven gregory's solution it is so elegantly proved!
    $endgroup$
    – Mary Tom
    Jan 26 at 8:44











    4












    $begingroup$

    Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
    $$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
    $$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
      $$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
      $$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
        $$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
        $$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$






        share|cite|improve this answer









        $endgroup$



        Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
        $$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
        $$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 26 at 7:54









        Michael RozenbergMichael Rozenberg

        108k1895200




        108k1895200























            2












            $begingroup$

            $(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$



            So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Are you happy now? +1
              $endgroup$
              – Maria Mazur
              Jan 26 at 12:04










            • $begingroup$
              I gave you a +1 too.
              $endgroup$
              – steven gregory
              Jan 28 at 14:02
















            2












            $begingroup$

            $(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$



            So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Are you happy now? +1
              $endgroup$
              – Maria Mazur
              Jan 26 at 12:04










            • $begingroup$
              I gave you a +1 too.
              $endgroup$
              – steven gregory
              Jan 28 at 14:02














            2












            2








            2





            $begingroup$

            $(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$



            So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.






            share|cite|improve this answer









            $endgroup$



            $(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$



            So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 26 at 10:32









            zwimzwim

            12.6k831




            12.6k831












            • $begingroup$
              Are you happy now? +1
              $endgroup$
              – Maria Mazur
              Jan 26 at 12:04










            • $begingroup$
              I gave you a +1 too.
              $endgroup$
              – steven gregory
              Jan 28 at 14:02


















            • $begingroup$
              Are you happy now? +1
              $endgroup$
              – Maria Mazur
              Jan 26 at 12:04










            • $begingroup$
              I gave you a +1 too.
              $endgroup$
              – steven gregory
              Jan 28 at 14:02
















            $begingroup$
            Are you happy now? +1
            $endgroup$
            – Maria Mazur
            Jan 26 at 12:04




            $begingroup$
            Are you happy now? +1
            $endgroup$
            – Maria Mazur
            Jan 26 at 12:04












            $begingroup$
            I gave you a +1 too.
            $endgroup$
            – steven gregory
            Jan 28 at 14:02




            $begingroup$
            I gave you a +1 too.
            $endgroup$
            – steven gregory
            Jan 28 at 14:02


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087996%2fif-x-y-and-z-are-positive-integers-and-frac-1x-frac-1y-frac-1z-then-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$