If x,y and z are positive integers and $frac 1x + frac 1y = frac 1z$ then $sqrt{x^2+y^2+z^2}$ is rational.
$begingroup$
To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)
polynomials radicals rational-numbers
$endgroup$
add a comment |
$begingroup$
To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)
polynomials radicals rational-numbers
$endgroup$
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49
add a comment |
$begingroup$
To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)
polynomials radicals rational-numbers
$endgroup$
To solve this problem I first started off by factoring to get $z^2=(x-z)(y-z)$ only to realise that this does nothing so I then tried squaring both sides to get the reciprocals of $x,y$ and $z$ squared minus $2$ over $xy$ but after this I have no idea what to do any form of help would be appreciated.(sorry for not using mathjax as my browser does not support it)
polynomials radicals rational-numbers
polynomials radicals rational-numbers
edited Jan 26 at 9:33
Michael Rozenberg
108k1895200
108k1895200
asked Jan 26 at 7:33
Mary TomMary Tom
326
326
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49
add a comment |
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)
begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}
Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}
$endgroup$
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
add a comment |
$begingroup$
Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$
$endgroup$
add a comment |
$begingroup$
$(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$
So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.
$endgroup$
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087996%2fif-x-y-and-z-are-positive-integers-and-frac-1x-frac-1y-frac-1z-then-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)
begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}
Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}
$endgroup$
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
add a comment |
$begingroup$
The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)
begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}
Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}
$endgroup$
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
add a comment |
$begingroup$
The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)
begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}
Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}
$endgroup$
The solutions to $dfrac 1x + dfrac 1y = dfrac 1z$ are characterized by
(See this)
begin{align}
x &= kp(p+q) \
y &= kq(p+q) \
z &= kpq
end{align}
Then
begin{align}
dfrac{x^2+y^2+z^2}{k^2}
&= p^2(p+q)^2 + q^2(p+q)^2 + p^2q^2 \
&= p^4 + 2p^3q + 3p^2q^2 + 2pq^3 + q^4 \
&= left( begin{array}{l}
p^4 &+ &p^3q &+ &p^2q^2 &+ \
& &p^3q &+ &p^2q^2 &+ &pq^3 &+ \
& & &+ &p^2q^2 &+ &pq^3 &+ &q^4
end{array} right) \
&= p^2(p^2 + pq + q^2) + pq(p^2 + pq + q^2) + q^2(p^2 + pq + q^2) \
&= (p^2 + pq + q^2)^2
end{align}
edited Jan 26 at 8:32
answered Jan 26 at 8:20
steven gregorysteven gregory
18.3k32358
18.3k32358
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
add a comment |
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
$begingroup$
I just love @steven gregory's solution it is so elegantly proved!
$endgroup$
– Mary Tom
Jan 26 at 8:44
add a comment |
$begingroup$
Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$
$endgroup$
add a comment |
$begingroup$
Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$
$endgroup$
add a comment |
$begingroup$
Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$
$endgroup$
Because $xneq-y$, $z=frac{xy}{x+y}$, $x^2+xy+y^2>0$ and
$$sqrt{x^2+y^2+z^2}=sqrt{x^2+y^2+frac{x^2y^2}{(x+y)^2}}=$$
$$=frac{sqrt{(x^2+y^2+xy-xy)(x^2+y^2+xy+xy)+x^2y^2}}{x+y}=frac{x^2+xy+y^2}{x+y}.$$
answered Jan 26 at 7:54
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
$begingroup$
$(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$
So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.
$endgroup$
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
add a comment |
$begingroup$
$(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$
So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.
$endgroup$
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
add a comment |
$begingroup$
$(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$
So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.
$endgroup$
$(x+y-z)^2=x^2+y^2+z^2+2xy-2xz-2yz=(x^2+y^2+z^2)+2xyzunderbrace{left(dfrac 1z-dfrac 1y-dfrac 1xright)}_0$
So $sqrt{x^2+y^2+z^2}=|x+y-z|$ so not only it is rational, but also integer.
answered Jan 26 at 10:32
zwimzwim
12.6k831
12.6k831
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
add a comment |
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
Are you happy now? +1
$endgroup$
– Maria Mazur
Jan 26 at 12:04
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
$begingroup$
I gave you a +1 too.
$endgroup$
– steven gregory
Jan 28 at 14:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087996%2fif-x-y-and-z-are-positive-integers-and-frac-1x-frac-1y-frac-1z-then-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
exactly @астонвіллаолофмэллбэрг
$endgroup$
– Mary Tom
Jan 26 at 7:36
$begingroup$
no way , but did you check x=y=z=1 @ shelby
$endgroup$
– Mary Tom
Jan 26 at 7:37
$begingroup$
so the question is asking to prove that ( x^2+y^2+z^2) is a perfect square.
$endgroup$
– Mary Tom
Jan 26 at 7:43
$begingroup$
Seen the edited question.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 26 at 7:49