Extracting two balls with the same color vs distinct color
$begingroup$
I am trying to find which has higher probability when extracting from a box without replacement: two balls of the same color, or two balls with different colors.
Let's assume that in the box are $a$ white balls and $b$ black balls.
$$P(text{distinct color})=P(text{first white})P(text{second black/first white})+P(text{first black})P(text{second white/first black})$$
$$=frac{a}{a+b}frac{b}{a+b-1}+frac{b}{a+b}frac{a}{a+b-1}=frac{2ab}{(a+b)(a+b-1)}$$
$$P(text{same color})=P(text{first white})P(text{second white/first white})+P(text{first black})P(text{second black/first black})$$
$$=frac{a}{a+b}frac{a-1}{a+b-1}+frac{b}{a+b}frac{b-1}{a+b-1}=frac{a^2+b^2-(a+b)}{(a+b)(a+b-1)}$$
But there is still needed to find which is more probably to happen, the case which I don't know how to proceed. Do I have to solve (I don't know how) for which domain of $a$ and $b$ does the following inequality hold true?
$$a^2+b^2-(a+b)< 2ab equiv (a-b)^2<a+b $$
This is like in the below answer, so I did it correctly, but still that doesn't help me to conclude an answer..
probability inequality
$endgroup$
add a comment |
$begingroup$
I am trying to find which has higher probability when extracting from a box without replacement: two balls of the same color, or two balls with different colors.
Let's assume that in the box are $a$ white balls and $b$ black balls.
$$P(text{distinct color})=P(text{first white})P(text{second black/first white})+P(text{first black})P(text{second white/first black})$$
$$=frac{a}{a+b}frac{b}{a+b-1}+frac{b}{a+b}frac{a}{a+b-1}=frac{2ab}{(a+b)(a+b-1)}$$
$$P(text{same color})=P(text{first white})P(text{second white/first white})+P(text{first black})P(text{second black/first black})$$
$$=frac{a}{a+b}frac{a-1}{a+b-1}+frac{b}{a+b}frac{b-1}{a+b-1}=frac{a^2+b^2-(a+b)}{(a+b)(a+b-1)}$$
But there is still needed to find which is more probably to happen, the case which I don't know how to proceed. Do I have to solve (I don't know how) for which domain of $a$ and $b$ does the following inequality hold true?
$$a^2+b^2-(a+b)< 2ab equiv (a-b)^2<a+b $$
This is like in the below answer, so I did it correctly, but still that doesn't help me to conclude an answer..
probability inequality
$endgroup$
1
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07
add a comment |
$begingroup$
I am trying to find which has higher probability when extracting from a box without replacement: two balls of the same color, or two balls with different colors.
Let's assume that in the box are $a$ white balls and $b$ black balls.
$$P(text{distinct color})=P(text{first white})P(text{second black/first white})+P(text{first black})P(text{second white/first black})$$
$$=frac{a}{a+b}frac{b}{a+b-1}+frac{b}{a+b}frac{a}{a+b-1}=frac{2ab}{(a+b)(a+b-1)}$$
$$P(text{same color})=P(text{first white})P(text{second white/first white})+P(text{first black})P(text{second black/first black})$$
$$=frac{a}{a+b}frac{a-1}{a+b-1}+frac{b}{a+b}frac{b-1}{a+b-1}=frac{a^2+b^2-(a+b)}{(a+b)(a+b-1)}$$
But there is still needed to find which is more probably to happen, the case which I don't know how to proceed. Do I have to solve (I don't know how) for which domain of $a$ and $b$ does the following inequality hold true?
$$a^2+b^2-(a+b)< 2ab equiv (a-b)^2<a+b $$
This is like in the below answer, so I did it correctly, but still that doesn't help me to conclude an answer..
probability inequality
$endgroup$
I am trying to find which has higher probability when extracting from a box without replacement: two balls of the same color, or two balls with different colors.
Let's assume that in the box are $a$ white balls and $b$ black balls.
$$P(text{distinct color})=P(text{first white})P(text{second black/first white})+P(text{first black})P(text{second white/first black})$$
$$=frac{a}{a+b}frac{b}{a+b-1}+frac{b}{a+b}frac{a}{a+b-1}=frac{2ab}{(a+b)(a+b-1)}$$
$$P(text{same color})=P(text{first white})P(text{second white/first white})+P(text{first black})P(text{second black/first black})$$
$$=frac{a}{a+b}frac{a-1}{a+b-1}+frac{b}{a+b}frac{b-1}{a+b-1}=frac{a^2+b^2-(a+b)}{(a+b)(a+b-1)}$$
But there is still needed to find which is more probably to happen, the case which I don't know how to proceed. Do I have to solve (I don't know how) for which domain of $a$ and $b$ does the following inequality hold true?
$$a^2+b^2-(a+b)< 2ab equiv (a-b)^2<a+b $$
This is like in the below answer, so I did it correctly, but still that doesn't help me to conclude an answer..
probability inequality
probability inequality
edited Feb 5 at 3:54
mjqxxxx
31.6k24086
31.6k24086
asked Jan 26 at 0:32
user625055
1
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07
add a comment |
1
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07
1
1
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your inequality
begin{align*}
(a-b)^2< a + b
end{align*}
can be expressed as
begin{align*}
a - sqrt{2a + frac{1}{4}}+frac{1}{2} < b < a + sqrt{2a + frac{1}{4}}+frac{1}{2}
end{align*}
or
begin{align*}
left|b - a - frac{1}{2}right| < sqrt{2a + frac{1}{4}}
end{align*}
This domain isn't pretty in any way, but we can make statements about its behavior as $a,b rightarrow infty$. For example, dividing both sides by $a$,
begin{align*}
left|frac{b}{a} - 1 - frac{1}{2a}right| < sqrt{frac{2}{a} + frac{1}{4a^2}}
end{align*}
Therefore, in order for the probability of distinct colors to be greater than probability of the same, we need $b = a$ for sufficiently large values of $a$.
$endgroup$
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
add a comment |
$begingroup$
Total number of possible extractions is $binom{a+b}{2}$
Number of ways to extract:
- two white balls: $binom{a}{2}$
- two black balls: $binom{b}{2}$
- one of each color: $ab$
Probabilities can be calculated as $$frac{binom{a}{2}+binom{b}{2}}{binom{a+b}{2}}text{ for same color and }frac{ab}{binom{a+b}{2}}text{ for different colors}$$
Since you only want to know which has the higher probability, you can simply compare $binom{a}{2}+binom{b}{2}$ with $ab$ to see which is greater. Dependent on the values of $a$ and $b$, this could go either way.
Here's a chart detailing which outcome is more likely for $a,ble30$. A plus (+) indicates that one ball of each color is more likely, a minus (-) indicates that two balls of one color is more likely, and the equal (=) indicates that the probability is split 50-50. Notice that they are equal when $a$ and $b$ are consectutive triangular numbers (1,3,6,10,15...).
Generally, when there are approximately equal numbers of each color, then drawing one ball of each color is more likely.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 + + = - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 + + + + - - - - - - - - - - - - - - - - - - - - - - - - - -
3 = + + + + = - - - - - - - - - - - - - - - - - - - - - - - -
4 - + + + + + + - - - - - - - - - - - - - - - - - - - - - - -
5 - - + + + + + + - - - - - - - - - - - - - - - - - - - - - -
6 - - = + + + + + + = - - - - - - - - - - - - - - - - - - - -
7 - - - + + + + + + + + - - - - - - - - - - - - - - - - - - -
8 - - - - + + + + + + + + - - - - - - - - - - - - - - - - - -
9 - - - - - + + + + + + + + - - - - - - - - - - - - - - - - -
10 - - - - - = + + + + + + + + = - - - - - - - - - - - - - - -
11 - - - - - - + + + + + + + + + + - - - - - - - - - - - - - -
12 - - - - - - - + + + + + + + + + + - - - - - - - - - - - - -
13 - - - - - - - - + + + + + + + + + + - - - - - - - - - - - -
14 - - - - - - - - - + + + + + + + + + + - - - - - - - - - - -
15 - - - - - - - - - = + + + + + + + + + + = - - - - - - - - -
16 - - - - - - - - - - + + + + + + + + + + + + - - - - - - - -
17 - - - - - - - - - - - + + + + + + + + + + + + - - - - - - -
18 - - - - - - - - - - - - + + + + + + + + + + + + - - - - - -
19 - - - - - - - - - - - - - + + + + + + + + + + + + - - - - -
20 - - - - - - - - - - - - - - + + + + + + + + + + + + - - - -
21 - - - - - - - - - - - - - - = + + + + + + + + + + + + = - -
22 - - - - - - - - - - - - - - - + + + + + + + + + + + + + + -
23 - - - - - - - - - - - - - - - - + + + + + + + + + + + + + +
24 - - - - - - - - - - - - - - - - - + + + + + + + + + + + + +
25 - - - - - - - - - - - - - - - - - - + + + + + + + + + + + +
26 - - - - - - - - - - - - - - - - - - - + + + + + + + + + + +
27 - - - - - - - - - - - - - - - - - - - - + + + + + + + + + +
28 - - - - - - - - - - - - - - - - - - - - = + + + + + + + + +
29 - - - - - - - - - - - - - - - - - - - - - + + + + + + + + +
30 - - - - - - - - - - - - - - - - - - - - - - + + + + + + + +
$endgroup$
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087772%2fextracting-two-balls-with-the-same-color-vs-distinct-color%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your inequality
begin{align*}
(a-b)^2< a + b
end{align*}
can be expressed as
begin{align*}
a - sqrt{2a + frac{1}{4}}+frac{1}{2} < b < a + sqrt{2a + frac{1}{4}}+frac{1}{2}
end{align*}
or
begin{align*}
left|b - a - frac{1}{2}right| < sqrt{2a + frac{1}{4}}
end{align*}
This domain isn't pretty in any way, but we can make statements about its behavior as $a,b rightarrow infty$. For example, dividing both sides by $a$,
begin{align*}
left|frac{b}{a} - 1 - frac{1}{2a}right| < sqrt{frac{2}{a} + frac{1}{4a^2}}
end{align*}
Therefore, in order for the probability of distinct colors to be greater than probability of the same, we need $b = a$ for sufficiently large values of $a$.
$endgroup$
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
add a comment |
$begingroup$
Your inequality
begin{align*}
(a-b)^2< a + b
end{align*}
can be expressed as
begin{align*}
a - sqrt{2a + frac{1}{4}}+frac{1}{2} < b < a + sqrt{2a + frac{1}{4}}+frac{1}{2}
end{align*}
or
begin{align*}
left|b - a - frac{1}{2}right| < sqrt{2a + frac{1}{4}}
end{align*}
This domain isn't pretty in any way, but we can make statements about its behavior as $a,b rightarrow infty$. For example, dividing both sides by $a$,
begin{align*}
left|frac{b}{a} - 1 - frac{1}{2a}right| < sqrt{frac{2}{a} + frac{1}{4a^2}}
end{align*}
Therefore, in order for the probability of distinct colors to be greater than probability of the same, we need $b = a$ for sufficiently large values of $a$.
$endgroup$
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
add a comment |
$begingroup$
Your inequality
begin{align*}
(a-b)^2< a + b
end{align*}
can be expressed as
begin{align*}
a - sqrt{2a + frac{1}{4}}+frac{1}{2} < b < a + sqrt{2a + frac{1}{4}}+frac{1}{2}
end{align*}
or
begin{align*}
left|b - a - frac{1}{2}right| < sqrt{2a + frac{1}{4}}
end{align*}
This domain isn't pretty in any way, but we can make statements about its behavior as $a,b rightarrow infty$. For example, dividing both sides by $a$,
begin{align*}
left|frac{b}{a} - 1 - frac{1}{2a}right| < sqrt{frac{2}{a} + frac{1}{4a^2}}
end{align*}
Therefore, in order for the probability of distinct colors to be greater than probability of the same, we need $b = a$ for sufficiently large values of $a$.
$endgroup$
Your inequality
begin{align*}
(a-b)^2< a + b
end{align*}
can be expressed as
begin{align*}
a - sqrt{2a + frac{1}{4}}+frac{1}{2} < b < a + sqrt{2a + frac{1}{4}}+frac{1}{2}
end{align*}
or
begin{align*}
left|b - a - frac{1}{2}right| < sqrt{2a + frac{1}{4}}
end{align*}
This domain isn't pretty in any way, but we can make statements about its behavior as $a,b rightarrow infty$. For example, dividing both sides by $a$,
begin{align*}
left|frac{b}{a} - 1 - frac{1}{2a}right| < sqrt{frac{2}{a} + frac{1}{4a^2}}
end{align*}
Therefore, in order for the probability of distinct colors to be greater than probability of the same, we need $b = a$ for sufficiently large values of $a$.
answered Jan 30 at 18:54


Tom ChenTom Chen
1,768715
1,768715
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
add a comment |
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
1
1
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
$begingroup$
correct (+1), and you may add that it is just the interior of the parabola $s=d^2$, where $s=a+b ;; d=a-b$
$endgroup$
– G Cab
Feb 2 at 1:49
add a comment |
$begingroup$
Total number of possible extractions is $binom{a+b}{2}$
Number of ways to extract:
- two white balls: $binom{a}{2}$
- two black balls: $binom{b}{2}$
- one of each color: $ab$
Probabilities can be calculated as $$frac{binom{a}{2}+binom{b}{2}}{binom{a+b}{2}}text{ for same color and }frac{ab}{binom{a+b}{2}}text{ for different colors}$$
Since you only want to know which has the higher probability, you can simply compare $binom{a}{2}+binom{b}{2}$ with $ab$ to see which is greater. Dependent on the values of $a$ and $b$, this could go either way.
Here's a chart detailing which outcome is more likely for $a,ble30$. A plus (+) indicates that one ball of each color is more likely, a minus (-) indicates that two balls of one color is more likely, and the equal (=) indicates that the probability is split 50-50. Notice that they are equal when $a$ and $b$ are consectutive triangular numbers (1,3,6,10,15...).
Generally, when there are approximately equal numbers of each color, then drawing one ball of each color is more likely.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 + + = - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 + + + + - - - - - - - - - - - - - - - - - - - - - - - - - -
3 = + + + + = - - - - - - - - - - - - - - - - - - - - - - - -
4 - + + + + + + - - - - - - - - - - - - - - - - - - - - - - -
5 - - + + + + + + - - - - - - - - - - - - - - - - - - - - - -
6 - - = + + + + + + = - - - - - - - - - - - - - - - - - - - -
7 - - - + + + + + + + + - - - - - - - - - - - - - - - - - - -
8 - - - - + + + + + + + + - - - - - - - - - - - - - - - - - -
9 - - - - - + + + + + + + + - - - - - - - - - - - - - - - - -
10 - - - - - = + + + + + + + + = - - - - - - - - - - - - - - -
11 - - - - - - + + + + + + + + + + - - - - - - - - - - - - - -
12 - - - - - - - + + + + + + + + + + - - - - - - - - - - - - -
13 - - - - - - - - + + + + + + + + + + - - - - - - - - - - - -
14 - - - - - - - - - + + + + + + + + + + - - - - - - - - - - -
15 - - - - - - - - - = + + + + + + + + + + = - - - - - - - - -
16 - - - - - - - - - - + + + + + + + + + + + + - - - - - - - -
17 - - - - - - - - - - - + + + + + + + + + + + + - - - - - - -
18 - - - - - - - - - - - - + + + + + + + + + + + + - - - - - -
19 - - - - - - - - - - - - - + + + + + + + + + + + + - - - - -
20 - - - - - - - - - - - - - - + + + + + + + + + + + + - - - -
21 - - - - - - - - - - - - - - = + + + + + + + + + + + + = - -
22 - - - - - - - - - - - - - - - + + + + + + + + + + + + + + -
23 - - - - - - - - - - - - - - - - + + + + + + + + + + + + + +
24 - - - - - - - - - - - - - - - - - + + + + + + + + + + + + +
25 - - - - - - - - - - - - - - - - - - + + + + + + + + + + + +
26 - - - - - - - - - - - - - - - - - - - + + + + + + + + + + +
27 - - - - - - - - - - - - - - - - - - - - + + + + + + + + + +
28 - - - - - - - - - - - - - - - - - - - - = + + + + + + + + +
29 - - - - - - - - - - - - - - - - - - - - - + + + + + + + + +
30 - - - - - - - - - - - - - - - - - - - - - - + + + + + + + +
$endgroup$
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
add a comment |
$begingroup$
Total number of possible extractions is $binom{a+b}{2}$
Number of ways to extract:
- two white balls: $binom{a}{2}$
- two black balls: $binom{b}{2}$
- one of each color: $ab$
Probabilities can be calculated as $$frac{binom{a}{2}+binom{b}{2}}{binom{a+b}{2}}text{ for same color and }frac{ab}{binom{a+b}{2}}text{ for different colors}$$
Since you only want to know which has the higher probability, you can simply compare $binom{a}{2}+binom{b}{2}$ with $ab$ to see which is greater. Dependent on the values of $a$ and $b$, this could go either way.
Here's a chart detailing which outcome is more likely for $a,ble30$. A plus (+) indicates that one ball of each color is more likely, a minus (-) indicates that two balls of one color is more likely, and the equal (=) indicates that the probability is split 50-50. Notice that they are equal when $a$ and $b$ are consectutive triangular numbers (1,3,6,10,15...).
Generally, when there are approximately equal numbers of each color, then drawing one ball of each color is more likely.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 + + = - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 + + + + - - - - - - - - - - - - - - - - - - - - - - - - - -
3 = + + + + = - - - - - - - - - - - - - - - - - - - - - - - -
4 - + + + + + + - - - - - - - - - - - - - - - - - - - - - - -
5 - - + + + + + + - - - - - - - - - - - - - - - - - - - - - -
6 - - = + + + + + + = - - - - - - - - - - - - - - - - - - - -
7 - - - + + + + + + + + - - - - - - - - - - - - - - - - - - -
8 - - - - + + + + + + + + - - - - - - - - - - - - - - - - - -
9 - - - - - + + + + + + + + - - - - - - - - - - - - - - - - -
10 - - - - - = + + + + + + + + = - - - - - - - - - - - - - - -
11 - - - - - - + + + + + + + + + + - - - - - - - - - - - - - -
12 - - - - - - - + + + + + + + + + + - - - - - - - - - - - - -
13 - - - - - - - - + + + + + + + + + + - - - - - - - - - - - -
14 - - - - - - - - - + + + + + + + + + + - - - - - - - - - - -
15 - - - - - - - - - = + + + + + + + + + + = - - - - - - - - -
16 - - - - - - - - - - + + + + + + + + + + + + - - - - - - - -
17 - - - - - - - - - - - + + + + + + + + + + + + - - - - - - -
18 - - - - - - - - - - - - + + + + + + + + + + + + - - - - - -
19 - - - - - - - - - - - - - + + + + + + + + + + + + - - - - -
20 - - - - - - - - - - - - - - + + + + + + + + + + + + - - - -
21 - - - - - - - - - - - - - - = + + + + + + + + + + + + = - -
22 - - - - - - - - - - - - - - - + + + + + + + + + + + + + + -
23 - - - - - - - - - - - - - - - - + + + + + + + + + + + + + +
24 - - - - - - - - - - - - - - - - - + + + + + + + + + + + + +
25 - - - - - - - - - - - - - - - - - - + + + + + + + + + + + +
26 - - - - - - - - - - - - - - - - - - - + + + + + + + + + + +
27 - - - - - - - - - - - - - - - - - - - - + + + + + + + + + +
28 - - - - - - - - - - - - - - - - - - - - = + + + + + + + + +
29 - - - - - - - - - - - - - - - - - - - - - + + + + + + + + +
30 - - - - - - - - - - - - - - - - - - - - - - + + + + + + + +
$endgroup$
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
add a comment |
$begingroup$
Total number of possible extractions is $binom{a+b}{2}$
Number of ways to extract:
- two white balls: $binom{a}{2}$
- two black balls: $binom{b}{2}$
- one of each color: $ab$
Probabilities can be calculated as $$frac{binom{a}{2}+binom{b}{2}}{binom{a+b}{2}}text{ for same color and }frac{ab}{binom{a+b}{2}}text{ for different colors}$$
Since you only want to know which has the higher probability, you can simply compare $binom{a}{2}+binom{b}{2}$ with $ab$ to see which is greater. Dependent on the values of $a$ and $b$, this could go either way.
Here's a chart detailing which outcome is more likely for $a,ble30$. A plus (+) indicates that one ball of each color is more likely, a minus (-) indicates that two balls of one color is more likely, and the equal (=) indicates that the probability is split 50-50. Notice that they are equal when $a$ and $b$ are consectutive triangular numbers (1,3,6,10,15...).
Generally, when there are approximately equal numbers of each color, then drawing one ball of each color is more likely.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 + + = - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 + + + + - - - - - - - - - - - - - - - - - - - - - - - - - -
3 = + + + + = - - - - - - - - - - - - - - - - - - - - - - - -
4 - + + + + + + - - - - - - - - - - - - - - - - - - - - - - -
5 - - + + + + + + - - - - - - - - - - - - - - - - - - - - - -
6 - - = + + + + + + = - - - - - - - - - - - - - - - - - - - -
7 - - - + + + + + + + + - - - - - - - - - - - - - - - - - - -
8 - - - - + + + + + + + + - - - - - - - - - - - - - - - - - -
9 - - - - - + + + + + + + + - - - - - - - - - - - - - - - - -
10 - - - - - = + + + + + + + + = - - - - - - - - - - - - - - -
11 - - - - - - + + + + + + + + + + - - - - - - - - - - - - - -
12 - - - - - - - + + + + + + + + + + - - - - - - - - - - - - -
13 - - - - - - - - + + + + + + + + + + - - - - - - - - - - - -
14 - - - - - - - - - + + + + + + + + + + - - - - - - - - - - -
15 - - - - - - - - - = + + + + + + + + + + = - - - - - - - - -
16 - - - - - - - - - - + + + + + + + + + + + + - - - - - - - -
17 - - - - - - - - - - - + + + + + + + + + + + + - - - - - - -
18 - - - - - - - - - - - - + + + + + + + + + + + + - - - - - -
19 - - - - - - - - - - - - - + + + + + + + + + + + + - - - - -
20 - - - - - - - - - - - - - - + + + + + + + + + + + + - - - -
21 - - - - - - - - - - - - - - = + + + + + + + + + + + + = - -
22 - - - - - - - - - - - - - - - + + + + + + + + + + + + + + -
23 - - - - - - - - - - - - - - - - + + + + + + + + + + + + + +
24 - - - - - - - - - - - - - - - - - + + + + + + + + + + + + +
25 - - - - - - - - - - - - - - - - - - + + + + + + + + + + + +
26 - - - - - - - - - - - - - - - - - - - + + + + + + + + + + +
27 - - - - - - - - - - - - - - - - - - - - + + + + + + + + + +
28 - - - - - - - - - - - - - - - - - - - - = + + + + + + + + +
29 - - - - - - - - - - - - - - - - - - - - - + + + + + + + + +
30 - - - - - - - - - - - - - - - - - - - - - - + + + + + + + +
$endgroup$
Total number of possible extractions is $binom{a+b}{2}$
Number of ways to extract:
- two white balls: $binom{a}{2}$
- two black balls: $binom{b}{2}$
- one of each color: $ab$
Probabilities can be calculated as $$frac{binom{a}{2}+binom{b}{2}}{binom{a+b}{2}}text{ for same color and }frac{ab}{binom{a+b}{2}}text{ for different colors}$$
Since you only want to know which has the higher probability, you can simply compare $binom{a}{2}+binom{b}{2}$ with $ab$ to see which is greater. Dependent on the values of $a$ and $b$, this could go either way.
Here's a chart detailing which outcome is more likely for $a,ble30$. A plus (+) indicates that one ball of each color is more likely, a minus (-) indicates that two balls of one color is more likely, and the equal (=) indicates that the probability is split 50-50. Notice that they are equal when $a$ and $b$ are consectutive triangular numbers (1,3,6,10,15...).
Generally, when there are approximately equal numbers of each color, then drawing one ball of each color is more likely.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 + + = - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 + + + + - - - - - - - - - - - - - - - - - - - - - - - - - -
3 = + + + + = - - - - - - - - - - - - - - - - - - - - - - - -
4 - + + + + + + - - - - - - - - - - - - - - - - - - - - - - -
5 - - + + + + + + - - - - - - - - - - - - - - - - - - - - - -
6 - - = + + + + + + = - - - - - - - - - - - - - - - - - - - -
7 - - - + + + + + + + + - - - - - - - - - - - - - - - - - - -
8 - - - - + + + + + + + + - - - - - - - - - - - - - - - - - -
9 - - - - - + + + + + + + + - - - - - - - - - - - - - - - - -
10 - - - - - = + + + + + + + + = - - - - - - - - - - - - - - -
11 - - - - - - + + + + + + + + + + - - - - - - - - - - - - - -
12 - - - - - - - + + + + + + + + + + - - - - - - - - - - - - -
13 - - - - - - - - + + + + + + + + + + - - - - - - - - - - - -
14 - - - - - - - - - + + + + + + + + + + - - - - - - - - - - -
15 - - - - - - - - - = + + + + + + + + + + = - - - - - - - - -
16 - - - - - - - - - - + + + + + + + + + + + + - - - - - - - -
17 - - - - - - - - - - - + + + + + + + + + + + + - - - - - - -
18 - - - - - - - - - - - - + + + + + + + + + + + + - - - - - -
19 - - - - - - - - - - - - - + + + + + + + + + + + + - - - - -
20 - - - - - - - - - - - - - - + + + + + + + + + + + + - - - -
21 - - - - - - - - - - - - - - = + + + + + + + + + + + + = - -
22 - - - - - - - - - - - - - - - + + + + + + + + + + + + + + -
23 - - - - - - - - - - - - - - - - + + + + + + + + + + + + + +
24 - - - - - - - - - - - - - - - - - + + + + + + + + + + + + +
25 - - - - - - - - - - - - - - - - - - + + + + + + + + + + + +
26 - - - - - - - - - - - - - - - - - - - + + + + + + + + + + +
27 - - - - - - - - - - - - - - - - - - - - + + + + + + + + + +
28 - - - - - - - - - - - - - - - - - - - - = + + + + + + + + +
29 - - - - - - - - - - - - - - - - - - - - - + + + + + + + + +
30 - - - - - - - - - - - - - - - - - - - - - - + + + + + + + +
edited Feb 2 at 0:09
answered Jan 26 at 2:52


Daniel MathiasDaniel Mathias
1,36018
1,36018
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
add a comment |
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
$begingroup$
You do realise the inequality you get is exactly what the OP got as well?
$endgroup$
– Macavity
Jan 26 at 8:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087772%2fextracting-two-balls-with-the-same-color-vs-distinct-color%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I have added a chart to my answer for visual reference.
$endgroup$
– Daniel Mathias
Feb 2 at 0:07