How to find the value $sum_{ngeq2}^{infty}(-1)^{n+1}frac{n}{n^2-1}$ converges to?












1












$begingroup$


How to find the value this sum converges to?$$sum_{ngeq2}^{infty}(-1)^{n+1}frac{n}{n^2-1} $$
I've tried writing it like this
$$sum_{ngeq2}^{infty}(-1)^{n+1}·n·Bigg(frac{1/2}{n-1}-frac{1/2}{n+1}Bigg) $$
and writing a few terms, but they won't cancel and I ended up with no ideas, any hint?
I haven't learnt integration nor differentiation FYI.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Ok I miss wrote one thing, thank guys.
    $endgroup$
    – iggykimi
    Jan 24 at 16:58
















1












$begingroup$


How to find the value this sum converges to?$$sum_{ngeq2}^{infty}(-1)^{n+1}frac{n}{n^2-1} $$
I've tried writing it like this
$$sum_{ngeq2}^{infty}(-1)^{n+1}·n·Bigg(frac{1/2}{n-1}-frac{1/2}{n+1}Bigg) $$
and writing a few terms, but they won't cancel and I ended up with no ideas, any hint?
I haven't learnt integration nor differentiation FYI.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Ok I miss wrote one thing, thank guys.
    $endgroup$
    – iggykimi
    Jan 24 at 16:58














1












1








1





$begingroup$


How to find the value this sum converges to?$$sum_{ngeq2}^{infty}(-1)^{n+1}frac{n}{n^2-1} $$
I've tried writing it like this
$$sum_{ngeq2}^{infty}(-1)^{n+1}·n·Bigg(frac{1/2}{n-1}-frac{1/2}{n+1}Bigg) $$
and writing a few terms, but they won't cancel and I ended up with no ideas, any hint?
I haven't learnt integration nor differentiation FYI.










share|cite|improve this question











$endgroup$




How to find the value this sum converges to?$$sum_{ngeq2}^{infty}(-1)^{n+1}frac{n}{n^2-1} $$
I've tried writing it like this
$$sum_{ngeq2}^{infty}(-1)^{n+1}·n·Bigg(frac{1/2}{n-1}-frac{1/2}{n+1}Bigg) $$
and writing a few terms, but they won't cancel and I ended up with no ideas, any hint?
I haven't learnt integration nor differentiation FYI.







real-analysis sequences-and-series summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 17:32









Lorenzo B.

1,8602520




1,8602520










asked Jan 24 at 16:39









iggykimiiggykimi

30710




30710












  • $begingroup$
    Ok I miss wrote one thing, thank guys.
    $endgroup$
    – iggykimi
    Jan 24 at 16:58


















  • $begingroup$
    Ok I miss wrote one thing, thank guys.
    $endgroup$
    – iggykimi
    Jan 24 at 16:58
















$begingroup$
Ok I miss wrote one thing, thank guys.
$endgroup$
– iggykimi
Jan 24 at 16:58




$begingroup$
Ok I miss wrote one thing, thank guys.
$endgroup$
– iggykimi
Jan 24 at 16:58










2 Answers
2






active

oldest

votes


















4












$begingroup$

Note that$$(-1)^{n+1}frac n{n^2-1}=frac12timesfrac{(-1)^{n+1}}{n-1}+frac12timesfrac{(-1)^{n+1}}{n+1}.$$But$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n-1}=sum_{n=1}^inftyfrac{(-1)^n}n=-log(2)$$and$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n+1}=sum_{n=3}^inftyfrac{(-1)^n}n=left(sum_{n=1}^inftyfrac{(-1)^n}nright)+1-frac12=-log(2)+frac12.$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Try writing $$begin{align}nleft({1over n-1}-{1over n+1}right)&=
    nleft({1over n-1}-{1over n} + {1over n} -{1over n+1}right)\
    &=nleft({1over n(n-1)}+{1over n(n+1)}right)\&={1over n-1}+{1over n+1}end{align}$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086095%2fhow-to-find-the-value-sum-n-geq2-infty-1n1-fracnn2-1-converge%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Note that$$(-1)^{n+1}frac n{n^2-1}=frac12timesfrac{(-1)^{n+1}}{n-1}+frac12timesfrac{(-1)^{n+1}}{n+1}.$$But$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n-1}=sum_{n=1}^inftyfrac{(-1)^n}n=-log(2)$$and$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n+1}=sum_{n=3}^inftyfrac{(-1)^n}n=left(sum_{n=1}^inftyfrac{(-1)^n}nright)+1-frac12=-log(2)+frac12.$$






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        Note that$$(-1)^{n+1}frac n{n^2-1}=frac12timesfrac{(-1)^{n+1}}{n-1}+frac12timesfrac{(-1)^{n+1}}{n+1}.$$But$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n-1}=sum_{n=1}^inftyfrac{(-1)^n}n=-log(2)$$and$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n+1}=sum_{n=3}^inftyfrac{(-1)^n}n=left(sum_{n=1}^inftyfrac{(-1)^n}nright)+1-frac12=-log(2)+frac12.$$






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          Note that$$(-1)^{n+1}frac n{n^2-1}=frac12timesfrac{(-1)^{n+1}}{n-1}+frac12timesfrac{(-1)^{n+1}}{n+1}.$$But$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n-1}=sum_{n=1}^inftyfrac{(-1)^n}n=-log(2)$$and$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n+1}=sum_{n=3}^inftyfrac{(-1)^n}n=left(sum_{n=1}^inftyfrac{(-1)^n}nright)+1-frac12=-log(2)+frac12.$$






          share|cite|improve this answer









          $endgroup$



          Note that$$(-1)^{n+1}frac n{n^2-1}=frac12timesfrac{(-1)^{n+1}}{n-1}+frac12timesfrac{(-1)^{n+1}}{n+1}.$$But$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n-1}=sum_{n=1}^inftyfrac{(-1)^n}n=-log(2)$$and$$sum_{n=2}^inftyfrac{(-1)^{n+1}}{n+1}=sum_{n=3}^inftyfrac{(-1)^n}n=left(sum_{n=1}^inftyfrac{(-1)^n}nright)+1-frac12=-log(2)+frac12.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 24 at 16:51









          José Carlos SantosJosé Carlos Santos

          168k22132236




          168k22132236























              3












              $begingroup$

              Try writing $$begin{align}nleft({1over n-1}-{1over n+1}right)&=
              nleft({1over n-1}-{1over n} + {1over n} -{1over n+1}right)\
              &=nleft({1over n(n-1)}+{1over n(n+1)}right)\&={1over n-1}+{1over n+1}end{align}$$






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Try writing $$begin{align}nleft({1over n-1}-{1over n+1}right)&=
                nleft({1over n-1}-{1over n} + {1over n} -{1over n+1}right)\
                &=nleft({1over n(n-1)}+{1over n(n+1)}right)\&={1over n-1}+{1over n+1}end{align}$$






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Try writing $$begin{align}nleft({1over n-1}-{1over n+1}right)&=
                  nleft({1over n-1}-{1over n} + {1over n} -{1over n+1}right)\
                  &=nleft({1over n(n-1)}+{1over n(n+1)}right)\&={1over n-1}+{1over n+1}end{align}$$






                  share|cite|improve this answer









                  $endgroup$



                  Try writing $$begin{align}nleft({1over n-1}-{1over n+1}right)&=
                  nleft({1over n-1}-{1over n} + {1over n} -{1over n+1}right)\
                  &=nleft({1over n(n-1)}+{1over n(n+1)}right)\&={1over n-1}+{1over n+1}end{align}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 24 at 16:55









                  saulspatzsaulspatz

                  17k31435




                  17k31435






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086095%2fhow-to-find-the-value-sum-n-geq2-infty-1n1-fracnn2-1-converge%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith