If $V$ is free, show that $f$ is surjective.












0












$begingroup$


Let $R$ be a commutative ring with $1$. Let $V$ and $W$ be $R$-modules.



a) Exhibit a canonical $R$-linear map $f: V^* otimes V to R $



b) If $V$ is free, show that $f$ is surjective.



Now for the first part $f:V^* otimes V to R$ would be $f(beta otimes v)=beta(v)$ $forall beta otimes v in V^* otimes V$



How can I prove the second part?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $R$ be a commutative ring with $1$. Let $V$ and $W$ be $R$-modules.



    a) Exhibit a canonical $R$-linear map $f: V^* otimes V to R $



    b) If $V$ is free, show that $f$ is surjective.



    Now for the first part $f:V^* otimes V to R$ would be $f(beta otimes v)=beta(v)$ $forall beta otimes v in V^* otimes V$



    How can I prove the second part?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $R$ be a commutative ring with $1$. Let $V$ and $W$ be $R$-modules.



      a) Exhibit a canonical $R$-linear map $f: V^* otimes V to R $



      b) If $V$ is free, show that $f$ is surjective.



      Now for the first part $f:V^* otimes V to R$ would be $f(beta otimes v)=beta(v)$ $forall beta otimes v in V^* otimes V$



      How can I prove the second part?










      share|cite|improve this question









      $endgroup$




      Let $R$ be a commutative ring with $1$. Let $V$ and $W$ be $R$-modules.



      a) Exhibit a canonical $R$-linear map $f: V^* otimes V to R $



      b) If $V$ is free, show that $f$ is surjective.



      Now for the first part $f:V^* otimes V to R$ would be $f(beta otimes v)=beta(v)$ $forall beta otimes v in V^* otimes V$



      How can I prove the second part?







      modules manifolds homological-algebra tensor-products free-modules






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 26 at 4:59









      GimgimGimgim

      29813




      29813






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          This is true if $V=Rcoprod V_1$,consider the $R$-homomorphism $alpha:Vrightarrow R$ which maps $(a,b)$ to $a$.then $f(alphaotimes (1,0))=1$.



          Hence your question is a special case.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 8:19










          • $begingroup$
            And what is the notation $V=Rcoprod V_1$? Is it direct product?
            $endgroup$
            – Gimgim
            Jan 26 at 8:21










          • $begingroup$
            @Gimgim yes,that is direct product.
            $endgroup$
            – Sky
            Jan 26 at 10:16










          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 11:20










          • $begingroup$
            @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
            $endgroup$
            – Roland
            Jan 26 at 12:46













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087916%2fif-v-is-free-show-that-f-is-surjective%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          This is true if $V=Rcoprod V_1$,consider the $R$-homomorphism $alpha:Vrightarrow R$ which maps $(a,b)$ to $a$.then $f(alphaotimes (1,0))=1$.



          Hence your question is a special case.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 8:19










          • $begingroup$
            And what is the notation $V=Rcoprod V_1$? Is it direct product?
            $endgroup$
            – Gimgim
            Jan 26 at 8:21










          • $begingroup$
            @Gimgim yes,that is direct product.
            $endgroup$
            – Sky
            Jan 26 at 10:16










          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 11:20










          • $begingroup$
            @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
            $endgroup$
            – Roland
            Jan 26 at 12:46


















          0












          $begingroup$

          This is true if $V=Rcoprod V_1$,consider the $R$-homomorphism $alpha:Vrightarrow R$ which maps $(a,b)$ to $a$.then $f(alphaotimes (1,0))=1$.



          Hence your question is a special case.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 8:19










          • $begingroup$
            And what is the notation $V=Rcoprod V_1$? Is it direct product?
            $endgroup$
            – Gimgim
            Jan 26 at 8:21










          • $begingroup$
            @Gimgim yes,that is direct product.
            $endgroup$
            – Sky
            Jan 26 at 10:16










          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 11:20










          • $begingroup$
            @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
            $endgroup$
            – Roland
            Jan 26 at 12:46
















          0












          0








          0





          $begingroup$

          This is true if $V=Rcoprod V_1$,consider the $R$-homomorphism $alpha:Vrightarrow R$ which maps $(a,b)$ to $a$.then $f(alphaotimes (1,0))=1$.



          Hence your question is a special case.






          share|cite|improve this answer









          $endgroup$



          This is true if $V=Rcoprod V_1$,consider the $R$-homomorphism $alpha:Vrightarrow R$ which maps $(a,b)$ to $a$.then $f(alphaotimes (1,0))=1$.



          Hence your question is a special case.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 26 at 7:17









          SkySky

          1,243312




          1,243312












          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 8:19










          • $begingroup$
            And what is the notation $V=Rcoprod V_1$? Is it direct product?
            $endgroup$
            – Gimgim
            Jan 26 at 8:21










          • $begingroup$
            @Gimgim yes,that is direct product.
            $endgroup$
            – Sky
            Jan 26 at 10:16










          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 11:20










          • $begingroup$
            @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
            $endgroup$
            – Roland
            Jan 26 at 12:46




















          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 8:19










          • $begingroup$
            And what is the notation $V=Rcoprod V_1$? Is it direct product?
            $endgroup$
            – Gimgim
            Jan 26 at 8:21










          • $begingroup$
            @Gimgim yes,that is direct product.
            $endgroup$
            – Sky
            Jan 26 at 10:16










          • $begingroup$
            Otherwise, what is a counter example?
            $endgroup$
            – Gimgim
            Jan 26 at 11:20










          • $begingroup$
            @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
            $endgroup$
            – Roland
            Jan 26 at 12:46


















          $begingroup$
          Otherwise, what is a counter example?
          $endgroup$
          – Gimgim
          Jan 26 at 8:19




          $begingroup$
          Otherwise, what is a counter example?
          $endgroup$
          – Gimgim
          Jan 26 at 8:19












          $begingroup$
          And what is the notation $V=Rcoprod V_1$? Is it direct product?
          $endgroup$
          – Gimgim
          Jan 26 at 8:21




          $begingroup$
          And what is the notation $V=Rcoprod V_1$? Is it direct product?
          $endgroup$
          – Gimgim
          Jan 26 at 8:21












          $begingroup$
          @Gimgim yes,that is direct product.
          $endgroup$
          – Sky
          Jan 26 at 10:16




          $begingroup$
          @Gimgim yes,that is direct product.
          $endgroup$
          – Sky
          Jan 26 at 10:16












          $begingroup$
          Otherwise, what is a counter example?
          $endgroup$
          – Gimgim
          Jan 26 at 11:20




          $begingroup$
          Otherwise, what is a counter example?
          $endgroup$
          – Gimgim
          Jan 26 at 11:20












          $begingroup$
          @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
          $endgroup$
          – Roland
          Jan 26 at 12:46






          $begingroup$
          @Gimgim Let $R=mathbb{Z}$ and $V=mathbb{Z}/nmathbb{Z}$. Then $V^*=Hom(mathbb{Z}/nmathbb{Z},mathbb{Z})=0$ so $V^*otimes Vto mathbb{Z}$ is not surjective.
          $endgroup$
          – Roland
          Jan 26 at 12:46




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087916%2fif-v-is-free-show-that-f-is-surjective%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith