Indefinite Integral for $cos x/(1+x^2)$
$begingroup$
I have been working on the indefinite integral of $cos x/(1+x^2)$.
$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$
are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?
Thank you very much.
analysis indefinite-integrals
$endgroup$
|
show 3 more comments
$begingroup$
I have been working on the indefinite integral of $cos x/(1+x^2)$.
$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$
are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?
Thank you very much.
analysis indefinite-integrals
$endgroup$
2
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
1
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
1
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
2
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33
|
show 3 more comments
$begingroup$
I have been working on the indefinite integral of $cos x/(1+x^2)$.
$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$
are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?
Thank you very much.
analysis indefinite-integrals
$endgroup$
I have been working on the indefinite integral of $cos x/(1+x^2)$.
$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$
are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?
Thank you very much.
analysis indefinite-integrals
analysis indefinite-integrals
edited Mar 27 '13 at 10:31


user642796
44.9k564119
44.9k564119
asked Apr 9 '12 at 16:18
Bilgis77Bilgis77
146226
146226
2
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
1
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
1
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
2
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33
|
show 3 more comments
2
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
1
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
1
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
2
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33
2
2
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
1
1
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
1
1
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
2
2
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33
|
show 3 more comments
2 Answers
2
active
oldest
votes
$begingroup$
There is no elementary antiderivative for either of those.
It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.
Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.
$endgroup$
add a comment |
$begingroup$
$intdfrac{sin x}{1+x^2}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f129692%2findefinite-integral-for-cos-x-1x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is no elementary antiderivative for either of those.
It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.
Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.
$endgroup$
add a comment |
$begingroup$
There is no elementary antiderivative for either of those.
It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.
Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.
$endgroup$
add a comment |
$begingroup$
There is no elementary antiderivative for either of those.
It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.
Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.
$endgroup$
There is no elementary antiderivative for either of those.
It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.
Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.
answered May 9 '12 at 21:39
Robert IsraelRobert Israel
328k23216469
328k23216469
add a comment |
add a comment |
$begingroup$
$intdfrac{sin x}{1+x^2}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$
$endgroup$
add a comment |
$begingroup$
$intdfrac{sin x}{1+x^2}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$
$endgroup$
add a comment |
$begingroup$
$intdfrac{sin x}{1+x^2}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$
$endgroup$
$intdfrac{sin x}{1+x^2}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$
$=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$
$=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$
$=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$
answered May 29 '15 at 15:47
Harry PeterHarry Peter
5,48911439
5,48911439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f129692%2findefinite-integral-for-cos-x-1x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20
$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29
1
$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59
1
$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27
2
$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33