Indefinite Integral for $cos x/(1+x^2)$












10












$begingroup$


I have been working on the indefinite integral of $cos x/(1+x^2)$.



$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$



are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?



Thank you very much.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    wolfram alpha provides a solution in terms of sine and cosine-integrals.
    $endgroup$
    – Fabian
    Apr 9 '12 at 16:20










  • $begingroup$
    Why is the word "undefined" in the title?
    $endgroup$
    – Michael Hardy
    Apr 9 '12 at 16:29






  • 1




    $begingroup$
    I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
    $endgroup$
    – Sunni
    Apr 9 '12 at 16:59








  • 1




    $begingroup$
    I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
    $endgroup$
    – Fabian
    Apr 9 '12 at 17:27






  • 2




    $begingroup$
    Defacing your questions is quite frowned upon; please don't do this.
    $endgroup$
    – user642796
    Mar 27 '13 at 10:33
















10












$begingroup$


I have been working on the indefinite integral of $cos x/(1+x^2)$.



$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$



are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?



Thank you very much.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    wolfram alpha provides a solution in terms of sine and cosine-integrals.
    $endgroup$
    – Fabian
    Apr 9 '12 at 16:20










  • $begingroup$
    Why is the word "undefined" in the title?
    $endgroup$
    – Michael Hardy
    Apr 9 '12 at 16:29






  • 1




    $begingroup$
    I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
    $endgroup$
    – Sunni
    Apr 9 '12 at 16:59








  • 1




    $begingroup$
    I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
    $endgroup$
    – Fabian
    Apr 9 '12 at 17:27






  • 2




    $begingroup$
    Defacing your questions is quite frowned upon; please don't do this.
    $endgroup$
    – user642796
    Mar 27 '13 at 10:33














10












10








10


3



$begingroup$


I have been working on the indefinite integral of $cos x/(1+x^2)$.



$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$



are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?



Thank you very much.










share|cite|improve this question











$endgroup$




I have been working on the indefinite integral of $cos x/(1+x^2)$.



$$ intfrac{cos x}{1+x^2};dxtext{ or } intfrac{sin x}{1+x^2};dx $$



are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?



Thank you very much.







analysis indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 27 '13 at 10:31









user642796

44.9k564119




44.9k564119










asked Apr 9 '12 at 16:18









Bilgis77Bilgis77

146226




146226








  • 2




    $begingroup$
    wolfram alpha provides a solution in terms of sine and cosine-integrals.
    $endgroup$
    – Fabian
    Apr 9 '12 at 16:20










  • $begingroup$
    Why is the word "undefined" in the title?
    $endgroup$
    – Michael Hardy
    Apr 9 '12 at 16:29






  • 1




    $begingroup$
    I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
    $endgroup$
    – Sunni
    Apr 9 '12 at 16:59








  • 1




    $begingroup$
    I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
    $endgroup$
    – Fabian
    Apr 9 '12 at 17:27






  • 2




    $begingroup$
    Defacing your questions is quite frowned upon; please don't do this.
    $endgroup$
    – user642796
    Mar 27 '13 at 10:33














  • 2




    $begingroup$
    wolfram alpha provides a solution in terms of sine and cosine-integrals.
    $endgroup$
    – Fabian
    Apr 9 '12 at 16:20










  • $begingroup$
    Why is the word "undefined" in the title?
    $endgroup$
    – Michael Hardy
    Apr 9 '12 at 16:29






  • 1




    $begingroup$
    I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
    $endgroup$
    – Sunni
    Apr 9 '12 at 16:59








  • 1




    $begingroup$
    I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
    $endgroup$
    – Fabian
    Apr 9 '12 at 17:27






  • 2




    $begingroup$
    Defacing your questions is quite frowned upon; please don't do this.
    $endgroup$
    – user642796
    Mar 27 '13 at 10:33








2




2




$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20




$begingroup$
wolfram alpha provides a solution in terms of sine and cosine-integrals.
$endgroup$
– Fabian
Apr 9 '12 at 16:20












$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29




$begingroup$
Why is the word "undefined" in the title?
$endgroup$
– Michael Hardy
Apr 9 '12 at 16:29




1




1




$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59






$begingroup$
I guess there is no explicit formula for the indefinite integral. I know and estimate $$ int_{0}^{pi/2}frac{cos x}{1+x^2};dxge int_{0}^{pi/2}frac{sin x}{1+x^2};dx $$
$endgroup$
– Sunni
Apr 9 '12 at 16:59






1




1




$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27




$begingroup$
I do not believe "impossible to solve" is a definition in the sense of @Aryabhata. Why do you not accept the solution in terms of sine and cosine-integral as being a solution? What would be a solution for you?
$endgroup$
– Fabian
Apr 9 '12 at 17:27




2




2




$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33




$begingroup$
Defacing your questions is quite frowned upon; please don't do this.
$endgroup$
– user642796
Mar 27 '13 at 10:33










2 Answers
2






active

oldest

votes


















11












$begingroup$

There is no elementary antiderivative for either of those.



It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.



Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
$h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    $intdfrac{sin x}{1+x^2}dx$



    $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$



    $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$



    $=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$



    $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$



    $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$



    $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



    $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



    $=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



    $=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



    $=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f129692%2findefinite-integral-for-cos-x-1x2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      There is no elementary antiderivative for either of those.



      It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.



      Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
      $h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.






      share|cite|improve this answer









      $endgroup$


















        11












        $begingroup$

        There is no elementary antiderivative for either of those.



        It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.



        Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
        $h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.






        share|cite|improve this answer









        $endgroup$
















          11












          11








          11





          $begingroup$

          There is no elementary antiderivative for either of those.



          It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.



          Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
          $h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.






          share|cite|improve this answer









          $endgroup$



          There is no elementary antiderivative for either of those.



          It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.



          Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there,
          $h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered May 9 '12 at 21:39









          Robert IsraelRobert Israel

          328k23216469




          328k23216469























              4












              $begingroup$

              $intdfrac{sin x}{1+x^2}dx$



              $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$



              $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$



              $=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$



              $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$



              $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$



              $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



              $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



              $=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



              $=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



              $=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                $intdfrac{sin x}{1+x^2}dx$



                $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$



                $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$



                $=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$



                $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$



                $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$



                $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                $=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                $=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                $=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  $intdfrac{sin x}{1+x^2}dx$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$



                  $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$






                  share|cite|improve this answer









                  $endgroup$



                  $intdfrac{sin x}{1+x^2}dx$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftydfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$



                  $=intsumlimits_{n=0}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$



                  $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=0}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(dfrac{1}{2(x^2+1)}+sumlimits_{n=1}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(sumlimits_{n=0}^inftydfrac{1}{2(2n+1)!(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=intleft(dfrac{sinh1}{2(x^2+1)}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}right)d(x^2+1)$



                  $=dfrac{sinh1ln(x^2+1)}{2}+sumlimits_{n=1}^inftysumlimits_{k=1}^ndfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 29 '15 at 15:47









                  Harry PeterHarry Peter

                  5,48911439




                  5,48911439






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f129692%2findefinite-integral-for-cos-x-1x2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith