$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$, where $lim_{nrightarrowinfty}{a_n}=infty$
$begingroup$
We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$
The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,
where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?
real-analysis limits
$endgroup$
add a comment |
$begingroup$
We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$
The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,
where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?
real-analysis limits
$endgroup$
1
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53
add a comment |
$begingroup$
We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$
The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,
where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?
real-analysis limits
$endgroup$
We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$
The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,
where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?
real-analysis limits
real-analysis limits
edited Jan 24 at 14:31


user1729
17.4k64193
17.4k64193
asked Jan 24 at 14:09


Hs PHs P
275
275
1
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53
add a comment |
1
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53
1
1
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$
whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$ exists.
To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that
$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$
and, so we get
$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$
using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.
$endgroup$
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085914%2flim-n-rightarrow-infty11-a-nn-lim-en-a-n-where-lim-n-rightarrow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$
whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$ exists.
To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that
$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$
and, so we get
$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$
using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.
$endgroup$
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
add a comment |
$begingroup$
Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$
whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$ exists.
To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that
$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$
and, so we get
$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$
using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.
$endgroup$
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
add a comment |
$begingroup$
Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$
whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$ exists.
To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that
$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$
and, so we get
$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$
using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.
$endgroup$
Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$
whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$ exists.
To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that
$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$
and, so we get
$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$
using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.
edited Jan 26 at 14:15
answered Jan 24 at 14:28


Hector BlandinHector Blandin
1,988816
1,988816
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
add a comment |
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
1
1
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085914%2flim-n-rightarrow-infty11-a-nn-lim-en-a-n-where-lim-n-rightarrow%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42
$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53