$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$, where $lim_{nrightarrowinfty}{a_n}=infty$












1












$begingroup$


We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$

The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,

where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
    $endgroup$
    – GEdgar
    Jan 24 at 14:42












  • $begingroup$
    Thank you for asking my questions.~
    $endgroup$
    – Hs P
    Jan 24 at 15:53
















1












$begingroup$


We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$

The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,

where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
    $endgroup$
    – GEdgar
    Jan 24 at 14:42












  • $begingroup$
    Thank you for asking my questions.~
    $endgroup$
    – Hs P
    Jan 24 at 15:53














1












1








1


1



$begingroup$


We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$

The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,

where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?










share|cite|improve this question











$endgroup$




We know that $lim_{nrightarrowinfty}(1+1/n)^n = e$

The following that
$lim_{nrightarrowinfty}(1+1/a_n)^n=lim e^{n/a_n}$,

where $a_n$ is positive sequence and $lim_{nrightarrowinfty}{a_n}=infty$
is true?







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 24 at 14:31









user1729

17.4k64193




17.4k64193










asked Jan 24 at 14:09









Hs PHs P

275




275








  • 1




    $begingroup$
    More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
    $endgroup$
    – GEdgar
    Jan 24 at 14:42












  • $begingroup$
    Thank you for asking my questions.~
    $endgroup$
    – Hs P
    Jan 24 at 15:53














  • 1




    $begingroup$
    More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
    $endgroup$
    – GEdgar
    Jan 24 at 14:42












  • $begingroup$
    Thank you for asking my questions.~
    $endgroup$
    – Hs P
    Jan 24 at 15:53








1




1




$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42






$begingroup$
More generally, $$lim A_n^{B_n} = (lim A_n)^{lim B_n}$$ unless it is one of the usual indeterminate forms like $0^0$ or $1^infty$.
$endgroup$
– GEdgar
Jan 24 at 14:42














$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53




$begingroup$
Thank you for asking my questions.~
$endgroup$
– Hs P
Jan 24 at 15:53










1 Answer
1






active

oldest

votes


















2












$begingroup$

Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$

whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$
exists.



To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that



$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$



and, so we get



$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$

using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thank you for asking my questions. I'll dive into your answer~!!
    $endgroup$
    – Hs P
    Jan 24 at 15:54











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085914%2flim-n-rightarrow-infty11-a-nn-lim-en-a-n-where-lim-n-rightarrow%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$

whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$
exists.



To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that



$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$



and, so we get



$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$

using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thank you for asking my questions. I'll dive into your answer~!!
    $endgroup$
    – Hs P
    Jan 24 at 15:54
















2












$begingroup$

Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$

whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$
exists.



To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that



$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$



and, so we get



$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$

using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thank you for asking my questions. I'll dive into your answer~!!
    $endgroup$
    – Hs P
    Jan 24 at 15:54














2












2








2





$begingroup$

Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$

whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$
exists.



To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that



$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$



and, so we get



$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$

using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.






share|cite|improve this answer











$endgroup$



Yes, that is true. Hint: You can show that
$underset{xto a}{lim}{ f(x)}=1$ and $underset{xto a}{lim}{ g(x)}=+infty$
implies that
$$underset{xto a}{lim}{ f(x)^{g(x)}}=e^{underset{xto a}{lim}{
left(f(x)-1right)g(x)}}$$

whenever $underset{xto a}{lim}{
left(f(x)-1right)g(x)}$
exists.



To see this you can Write the following:
$$f(x)^{g(x)}=left(left(1+(f(x)-1)right)^{displaystyle{frac{1}{f(x)-1}}}right)^{(f(x)-1)g(x)}$$
then you can use the assertion of GEdgar's comment. You have to recall that



$$underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}} = e $$



and, so we get



$$ underset{xto a }{lim}{ bigg(1+(f(x)-1)bigg)^{displaystyle{frac{1}{f(x)-1}}}}
= underset{uto 0}{lim}{ (1+u)^{displaystyle{frac{1}{u}}}}=e
$$

using the change of variables $u=f(x)-1$. Then, $uto 0$ as $xto a$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 26 at 14:15

























answered Jan 24 at 14:28









Hector BlandinHector Blandin

1,988816




1,988816








  • 1




    $begingroup$
    Thank you for asking my questions. I'll dive into your answer~!!
    $endgroup$
    – Hs P
    Jan 24 at 15:54














  • 1




    $begingroup$
    Thank you for asking my questions. I'll dive into your answer~!!
    $endgroup$
    – Hs P
    Jan 24 at 15:54








1




1




$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54




$begingroup$
Thank you for asking my questions. I'll dive into your answer~!!
$endgroup$
– Hs P
Jan 24 at 15:54


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085914%2flim-n-rightarrow-infty11-a-nn-lim-en-a-n-where-lim-n-rightarrow%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith