Compare ratio of two determinants before and after adding sum of rank 1 matrices in both determinants












1












$begingroup$


I have a ratio between two determinants:
$$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.



Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
$$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$



Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.



Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
$$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.



So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.



I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I have a ratio between two determinants:
    $$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
    where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.



    Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
    $$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$



    Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.



    Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
    $$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
    where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.



    So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.



    I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I have a ratio between two determinants:
      $$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
      where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.



      Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
      $$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$



      Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.



      Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
      $$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
      where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.



      So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.



      I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.










      share|cite|improve this question









      $endgroup$




      I have a ratio between two determinants:
      $$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
      where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.



      Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
      $$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$



      Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.



      Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
      $$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
      where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.



      So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.



      I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.







      linear-algebra matrices determinant positive-definite symmetric-matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 31 at 19:59









      Chuanhao LiChuanhao Li

      132




      132






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095368%2fcompare-ratio-of-two-determinants-before-and-after-adding-sum-of-rank-1-matrices%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095368%2fcompare-ratio-of-two-determinants-before-and-after-adding-sum-of-rank-1-matrices%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$