Compare ratio of two determinants before and after adding sum of rank 1 matrices in both determinants
$begingroup$
I have a ratio between two determinants:
$$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.
Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
$$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$
Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.
Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
$$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.
So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.
I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.
linear-algebra matrices determinant positive-definite symmetric-matrices
$endgroup$
add a comment |
$begingroup$
I have a ratio between two determinants:
$$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.
Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
$$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$
Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.
Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
$$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.
So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.
I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.
linear-algebra matrices determinant positive-definite symmetric-matrices
$endgroup$
add a comment |
$begingroup$
I have a ratio between two determinants:
$$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.
Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
$$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$
Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.
Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
$$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.
So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.
I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.
linear-algebra matrices determinant positive-definite symmetric-matrices
$endgroup$
I have a ratio between two determinants:
$$r_1 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)}{det(lambda I_d)}$$
where $x in mathbb{R}^{d}$, $||x||_{2} leq 1$, $lambda > 0$, and $I_d in mathbb{R}^{d times d}$ is identity matrix.
Now I add another sum of $n_p$ rank-1 matrices $sum_{t=1}^{n_p} x_{t}{x_{t}}^T$ (or equivalently write it as ${X_{p}}^{T}X_{p}$, where each row of $X_{p} in mathbb{R}^{n_{p} times d}$ is $x_t$) to both determinants.
$$r_2 = frac{det(lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})}$$
Now I want to compare the two ratios $r_1$ and $r_2$. Or maybe even better, with some other assumptions I can say $r_1$ is how many times of $r_2$.
Following the generalization of this matrix-determinant lemma, I can rewrite $r_2$ as:
$$r_2 = frac{det(A + {X_{p}}^{T}X_{p})}{det(lambda I_d + {X_{p}}^{T}X_{p})} = frac{det(A)det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(lambda I_d)det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})} = r_{1}frac{det(I_{n_p}+X_{p} A^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$$
where $A=lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T$.
So the problem of comparing the two ratios becomes comparing $frac{det(I_{n_p}+X_{p} (lambda I_d + sum_{t=1}^{n}x_{t}{x_{t}}^T)^{-1} {X_{p}}^{T})}{det(I_{n_p}+ X_{p} (lambda I_d)^{-1}{X_{p}}^{T})}$ with $1$.
I don't know what to do from here. Intuitively the numerator should be smaller than denominator, since the term inside the "inverse" in the numerator is "bigger", so $r_2$ should be smaller.
linear-algebra matrices determinant positive-definite symmetric-matrices
linear-algebra matrices determinant positive-definite symmetric-matrices
asked Jan 31 at 19:59
Chuanhao LiChuanhao Li
132
132
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095368%2fcompare-ratio-of-two-determinants-before-and-after-adding-sum-of-rank-1-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095368%2fcompare-ratio-of-two-determinants-before-and-after-adding-sum-of-rank-1-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown