What is the limit of $(1-x)^frac{1}{x}$ as x approaches 0?












1












$begingroup$


Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 31 at 20:57












  • $begingroup$
    Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
    $endgroup$
    – Tito Eliatron
    Jan 31 at 20:58










  • $begingroup$
    This is about the second most famous mathematical constant.
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:01










  • $begingroup$
    wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:04
















1












$begingroup$


Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 31 at 20:57












  • $begingroup$
    Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
    $endgroup$
    – Tito Eliatron
    Jan 31 at 20:58










  • $begingroup$
    This is about the second most famous mathematical constant.
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:01










  • $begingroup$
    wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:04














1












1








1





$begingroup$


Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.










share|cite|improve this question









$endgroup$




Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.







limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 20:56









VyvianVyvian

82




82








  • 2




    $begingroup$
    If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 31 at 20:57












  • $begingroup$
    Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
    $endgroup$
    – Tito Eliatron
    Jan 31 at 20:58










  • $begingroup$
    This is about the second most famous mathematical constant.
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:01










  • $begingroup$
    wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:04














  • 2




    $begingroup$
    If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 31 at 20:57












  • $begingroup$
    Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
    $endgroup$
    – Tito Eliatron
    Jan 31 at 20:58










  • $begingroup$
    This is about the second most famous mathematical constant.
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:01










  • $begingroup$
    wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
    $endgroup$
    – Yves Daoust
    Jan 31 at 21:04








2




2




$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57






$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57














$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58




$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58












$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01




$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01












$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04




$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04










3 Answers
3






active

oldest

votes


















0












$begingroup$

Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I didn't identify that it was just the reciprocal of e, thanks
    $endgroup$
    – Vyvian
    Jan 31 at 21:30



















1












$begingroup$

Hint:



Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.






share|cite|improve this answer









$endgroup$





















    -1












    $begingroup$

    By the Binomial theorem,



    $$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
    \=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
    \=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$



    The constant term of this expression is, for unbounded $n$,



    $$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$



    Then coefficient of $dfrac1n$ is



    $$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$



    So the first order approximation is



    $$left(1-xright)^x=frac1e-frac x{2e}.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Undue downvote.
      $endgroup$
      – Yves Daoust
      Jan 31 at 21:22












    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095445%2fwhat-is-the-limit-of-1-x-frac1x-as-x-approaches-0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I didn't identify that it was just the reciprocal of e, thanks
      $endgroup$
      – Vyvian
      Jan 31 at 21:30
















    0












    $begingroup$

    Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I didn't identify that it was just the reciprocal of e, thanks
      $endgroup$
      – Vyvian
      Jan 31 at 21:30














    0












    0








    0





    $begingroup$

    Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.






    share|cite|improve this answer









    $endgroup$



    Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 31 at 21:02









    Chris CusterChris Custer

    14.3k3827




    14.3k3827












    • $begingroup$
      I didn't identify that it was just the reciprocal of e, thanks
      $endgroup$
      – Vyvian
      Jan 31 at 21:30


















    • $begingroup$
      I didn't identify that it was just the reciprocal of e, thanks
      $endgroup$
      – Vyvian
      Jan 31 at 21:30
















    $begingroup$
    I didn't identify that it was just the reciprocal of e, thanks
    $endgroup$
    – Vyvian
    Jan 31 at 21:30




    $begingroup$
    I didn't identify that it was just the reciprocal of e, thanks
    $endgroup$
    – Vyvian
    Jan 31 at 21:30











    1












    $begingroup$

    Hint:



    Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Hint:



      Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Hint:



        Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.






        share|cite|improve this answer









        $endgroup$



        Hint:



        Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 31 at 21:00









        BernardBernard

        124k741117




        124k741117























            -1












            $begingroup$

            By the Binomial theorem,



            $$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
            \=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
            \=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$



            The constant term of this expression is, for unbounded $n$,



            $$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$



            Then coefficient of $dfrac1n$ is



            $$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$



            So the first order approximation is



            $$left(1-xright)^x=frac1e-frac x{2e}.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Undue downvote.
              $endgroup$
              – Yves Daoust
              Jan 31 at 21:22
















            -1












            $begingroup$

            By the Binomial theorem,



            $$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
            \=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
            \=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$



            The constant term of this expression is, for unbounded $n$,



            $$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$



            Then coefficient of $dfrac1n$ is



            $$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$



            So the first order approximation is



            $$left(1-xright)^x=frac1e-frac x{2e}.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Undue downvote.
              $endgroup$
              – Yves Daoust
              Jan 31 at 21:22














            -1












            -1








            -1





            $begingroup$

            By the Binomial theorem,



            $$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
            \=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
            \=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$



            The constant term of this expression is, for unbounded $n$,



            $$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$



            Then coefficient of $dfrac1n$ is



            $$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$



            So the first order approximation is



            $$left(1-xright)^x=frac1e-frac x{2e}.$$






            share|cite|improve this answer









            $endgroup$



            By the Binomial theorem,



            $$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
            \=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
            \=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$



            The constant term of this expression is, for unbounded $n$,



            $$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$



            Then coefficient of $dfrac1n$ is



            $$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$



            So the first order approximation is



            $$left(1-xright)^x=frac1e-frac x{2e}.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 31 at 21:21









            Yves DaoustYves Daoust

            132k676230




            132k676230












            • $begingroup$
              Undue downvote.
              $endgroup$
              – Yves Daoust
              Jan 31 at 21:22


















            • $begingroup$
              Undue downvote.
              $endgroup$
              – Yves Daoust
              Jan 31 at 21:22
















            $begingroup$
            Undue downvote.
            $endgroup$
            – Yves Daoust
            Jan 31 at 21:22




            $begingroup$
            Undue downvote.
            $endgroup$
            – Yves Daoust
            Jan 31 at 21:22


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095445%2fwhat-is-the-limit-of-1-x-frac1x-as-x-approaches-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]