What is the limit of $(1-x)^frac{1}{x}$ as x approaches 0?
$begingroup$
Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.
limits
$endgroup$
add a comment |
$begingroup$
Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.
limits
$endgroup$
2
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04
add a comment |
$begingroup$
Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.
limits
$endgroup$
Basically, if something has a probability of 1/5, doing it 5 times gives a probability of it not happening that's close to that formula. Doing something with a probability of 1/100 100 times makes it even closer. I'm wondering if this is a well-known named constant, the way these probabilities converge is interesting to me.
limits
limits
asked Jan 31 at 20:56
VyvianVyvian
82
82
2
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04
add a comment |
2
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04
2
2
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.
$endgroup$
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
add a comment |
$begingroup$
Hint:
Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.
$endgroup$
add a comment |
$begingroup$
By the Binomial theorem,
$$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
\=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
\=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$
The constant term of this expression is, for unbounded $n$,
$$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$
Then coefficient of $dfrac1n$ is
$$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$
So the first order approximation is
$$left(1-xright)^x=frac1e-frac x{2e}.$$
$endgroup$
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095445%2fwhat-is-the-limit-of-1-x-frac1x-as-x-approaches-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.
$endgroup$
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
add a comment |
$begingroup$
Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.
$endgroup$
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
add a comment |
$begingroup$
Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.
$endgroup$
Let $n=frac1x$. You get $lim_{ntoinfty}(1-frac1n)^n=frac1e$.
answered Jan 31 at 21:02
Chris CusterChris Custer
14.3k3827
14.3k3827
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
add a comment |
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
$begingroup$
I didn't identify that it was just the reciprocal of e, thanks
$endgroup$
– Vyvian
Jan 31 at 21:30
add a comment |
$begingroup$
Hint:
Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.
$endgroup$
add a comment |
$begingroup$
Hint:
Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.
$endgroup$
add a comment |
$begingroup$
Hint:
Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.
$endgroup$
Hint:
Determine first the limit of the logarithm: $;dfrac1x,ln (1-x)=dfrac{ln(1-x)-ln 1}x;$ is a rate of variation.
answered Jan 31 at 21:00
BernardBernard
124k741117
124k741117
add a comment |
add a comment |
$begingroup$
By the Binomial theorem,
$$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
\=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
\=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$
The constant term of this expression is, for unbounded $n$,
$$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$
Then coefficient of $dfrac1n$ is
$$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$
So the first order approximation is
$$left(1-xright)^x=frac1e-frac x{2e}.$$
$endgroup$
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
add a comment |
$begingroup$
By the Binomial theorem,
$$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
\=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
\=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$
The constant term of this expression is, for unbounded $n$,
$$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$
Then coefficient of $dfrac1n$ is
$$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$
So the first order approximation is
$$left(1-xright)^x=frac1e-frac x{2e}.$$
$endgroup$
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
add a comment |
$begingroup$
By the Binomial theorem,
$$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
\=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
\=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$
The constant term of this expression is, for unbounded $n$,
$$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$
Then coefficient of $dfrac1n$ is
$$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$
So the first order approximation is
$$left(1-xright)^x=frac1e-frac x{2e}.$$
$endgroup$
By the Binomial theorem,
$$left(1-frac1nright)^n=sum_{k=0}^nbinom nkleft(-frac1nright)^k
\=1-frac nn+frac{n(n-1)}{2n^2}-frac{n(n-1)(n-2)}{3!n^3}+frac{n(n-1)(n-2)(n-3)}{4!n^4}-cdotsleft(-frac1nright)^n
\=frac12left(1-frac1nright)-frac1{3!}left(1-frac1nright)left(1-frac2nright)+frac1{4!}left(1-frac1nright)left(1-frac2nright)left(1-frac3nright)-cdotsleft(-frac1nright)^n$$
The constant term of this expression is, for unbounded $n$,
$$frac12-frac1{3!}+frac1{4!}-cdotsto e^{-1}$$
Then coefficient of $dfrac1n$ is
$$-frac12+frac{1+2}{3!}-frac{1+2+3}{4!}-cdots frac{(n-1)n}{2n!}cdotsto -frac{e^{-1}}2$$
So the first order approximation is
$$left(1-xright)^x=frac1e-frac x{2e}.$$
answered Jan 31 at 21:21
Yves DaoustYves Daoust
132k676230
132k676230
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
add a comment |
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
$begingroup$
Undue downvote.
$endgroup$
– Yves Daoust
Jan 31 at 21:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095445%2fwhat-is-the-limit-of-1-x-frac1x-as-x-approaches-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If $x=1/n$ then this becomes $$left(1-frac1nright)^n$$ which has a ver well-known limit as $ntoinfty$.
$endgroup$
– Lord Shark the Unknown
Jan 31 at 20:57
$begingroup$
Seee (sorry), See e en.wikipedia.org/wiki/E_(mathematical_constant)#History
$endgroup$
– Tito Eliatron
Jan 31 at 20:58
$begingroup$
This is about the second most famous mathematical constant.
$endgroup$
– Yves Daoust
Jan 31 at 21:01
$begingroup$
wolframalpha.com/input/?i=series+expansion+of+(1-x)%5E(1%2Fx)
$endgroup$
– Yves Daoust
Jan 31 at 21:04