general topology on real line [closed]












0












$begingroup$


Given open sets A and B on Real line. Construct example such that $Acap overline B$, $overline A cap B$, $overline {Acap B}$, $overline A cap overline B$ are distinct. Also give an example of two intervals such that $Acap overline B not subset overline {Acap B}$.










share|cite|improve this question









$endgroup$



closed as off-topic by José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan Jan 31 at 21:31


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 4




    $begingroup$
    Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
    $endgroup$
    – Matthew Leingang
    Jan 31 at 19:09
















0












$begingroup$


Given open sets A and B on Real line. Construct example such that $Acap overline B$, $overline A cap B$, $overline {Acap B}$, $overline A cap overline B$ are distinct. Also give an example of two intervals such that $Acap overline B not subset overline {Acap B}$.










share|cite|improve this question









$endgroup$



closed as off-topic by José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan Jan 31 at 21:31


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 4




    $begingroup$
    Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
    $endgroup$
    – Matthew Leingang
    Jan 31 at 19:09














0












0








0





$begingroup$


Given open sets A and B on Real line. Construct example such that $Acap overline B$, $overline A cap B$, $overline {Acap B}$, $overline A cap overline B$ are distinct. Also give an example of two intervals such that $Acap overline B not subset overline {Acap B}$.










share|cite|improve this question









$endgroup$




Given open sets A and B on Real line. Construct example such that $Acap overline B$, $overline A cap B$, $overline {Acap B}$, $overline A cap overline B$ are distinct. Also give an example of two intervals such that $Acap overline B not subset overline {Acap B}$.







general-topology






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 19:06









prabhjotsinghprabhjotsingh

43




43




closed as off-topic by José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan Jan 31 at 21:31


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan

If this question can be reworded to fit the rules in the help center, please edit the question.







closed as off-topic by José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan Jan 31 at 21:31


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Michael Hoppe, Lee Mosher, Jyrki Lahtonen, YiFan

If this question can be reworded to fit the rules in the help center, please edit the question.








  • 4




    $begingroup$
    Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
    $endgroup$
    – Matthew Leingang
    Jan 31 at 19:09














  • 4




    $begingroup$
    Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
    $endgroup$
    – Matthew Leingang
    Jan 31 at 19:09








4




4




$begingroup$
Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
$endgroup$
– Matthew Leingang
Jan 31 at 19:09




$begingroup$
Hi, welcome. You didn't actually ask a question—you issued a command. You'll get more useful information back from this community if you do your own work first, then ask a question at the point you get stuck.
$endgroup$
– Matthew Leingang
Jan 31 at 19:09










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $A=(0,2)cup (3,4)$ and $B=(1,3).$



$Acap overline B=((0,2)cup (3,4))cap [1,3]=[1,2).$



$overline Acap B=([0,2]cup [3,4])cap (1,3) =(1,2].$



$overline Acap overline B=([0,2]cup [3,4])cap [1,3]=[1,2]cup {3}.$



$overline {Acap B}=overline {(1,2)}=[1,2].$



Let $A'=[0,1]$ and $B'=(1,2].$



$1in [0,1]cap [1,2]=A'capoverline {B'}.$



$1not in emptyset =A'cap B'=overline {A'cap B'}.$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    I think I found something, but I'm not quite sure whether it is a little bit too complicated:
    begin{equation*}
    A= bigcup_{ninmathbb{N}} bigg]frac{1}{n+1}, frac{1}{n}bigg[, quad B=bigcup_{ninmathbb{N}}bigg]frac{2n+3}{(n+1)(n+2)},frac{2n+1}{n(n+1)}bigg[.
    end{equation*}

    Try it with these sets.






    share|cite|improve this answer









    $endgroup$




















      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Let $A=(0,2)cup (3,4)$ and $B=(1,3).$



      $Acap overline B=((0,2)cup (3,4))cap [1,3]=[1,2).$



      $overline Acap B=([0,2]cup [3,4])cap (1,3) =(1,2].$



      $overline Acap overline B=([0,2]cup [3,4])cap [1,3]=[1,2]cup {3}.$



      $overline {Acap B}=overline {(1,2)}=[1,2].$



      Let $A'=[0,1]$ and $B'=(1,2].$



      $1in [0,1]cap [1,2]=A'capoverline {B'}.$



      $1not in emptyset =A'cap B'=overline {A'cap B'}.$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Let $A=(0,2)cup (3,4)$ and $B=(1,3).$



        $Acap overline B=((0,2)cup (3,4))cap [1,3]=[1,2).$



        $overline Acap B=([0,2]cup [3,4])cap (1,3) =(1,2].$



        $overline Acap overline B=([0,2]cup [3,4])cap [1,3]=[1,2]cup {3}.$



        $overline {Acap B}=overline {(1,2)}=[1,2].$



        Let $A'=[0,1]$ and $B'=(1,2].$



        $1in [0,1]cap [1,2]=A'capoverline {B'}.$



        $1not in emptyset =A'cap B'=overline {A'cap B'}.$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $A=(0,2)cup (3,4)$ and $B=(1,3).$



          $Acap overline B=((0,2)cup (3,4))cap [1,3]=[1,2).$



          $overline Acap B=([0,2]cup [3,4])cap (1,3) =(1,2].$



          $overline Acap overline B=([0,2]cup [3,4])cap [1,3]=[1,2]cup {3}.$



          $overline {Acap B}=overline {(1,2)}=[1,2].$



          Let $A'=[0,1]$ and $B'=(1,2].$



          $1in [0,1]cap [1,2]=A'capoverline {B'}.$



          $1not in emptyset =A'cap B'=overline {A'cap B'}.$






          share|cite|improve this answer









          $endgroup$



          Let $A=(0,2)cup (3,4)$ and $B=(1,3).$



          $Acap overline B=((0,2)cup (3,4))cap [1,3]=[1,2).$



          $overline Acap B=([0,2]cup [3,4])cap (1,3) =(1,2].$



          $overline Acap overline B=([0,2]cup [3,4])cap [1,3]=[1,2]cup {3}.$



          $overline {Acap B}=overline {(1,2)}=[1,2].$



          Let $A'=[0,1]$ and $B'=(1,2].$



          $1in [0,1]cap [1,2]=A'capoverline {B'}.$



          $1not in emptyset =A'cap B'=overline {A'cap B'}.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 31 at 21:31









          DanielWainfleetDanielWainfleet

          35.8k31648




          35.8k31648























              0












              $begingroup$

              I think I found something, but I'm not quite sure whether it is a little bit too complicated:
              begin{equation*}
              A= bigcup_{ninmathbb{N}} bigg]frac{1}{n+1}, frac{1}{n}bigg[, quad B=bigcup_{ninmathbb{N}}bigg]frac{2n+3}{(n+1)(n+2)},frac{2n+1}{n(n+1)}bigg[.
              end{equation*}

              Try it with these sets.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                I think I found something, but I'm not quite sure whether it is a little bit too complicated:
                begin{equation*}
                A= bigcup_{ninmathbb{N}} bigg]frac{1}{n+1}, frac{1}{n}bigg[, quad B=bigcup_{ninmathbb{N}}bigg]frac{2n+3}{(n+1)(n+2)},frac{2n+1}{n(n+1)}bigg[.
                end{equation*}

                Try it with these sets.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  I think I found something, but I'm not quite sure whether it is a little bit too complicated:
                  begin{equation*}
                  A= bigcup_{ninmathbb{N}} bigg]frac{1}{n+1}, frac{1}{n}bigg[, quad B=bigcup_{ninmathbb{N}}bigg]frac{2n+3}{(n+1)(n+2)},frac{2n+1}{n(n+1)}bigg[.
                  end{equation*}

                  Try it with these sets.






                  share|cite|improve this answer









                  $endgroup$



                  I think I found something, but I'm not quite sure whether it is a little bit too complicated:
                  begin{equation*}
                  A= bigcup_{ninmathbb{N}} bigg]frac{1}{n+1}, frac{1}{n}bigg[, quad B=bigcup_{ninmathbb{N}}bigg]frac{2n+3}{(n+1)(n+2)},frac{2n+1}{n(n+1)}bigg[.
                  end{equation*}

                  Try it with these sets.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 31 at 20:20









                  Joseph ExpoJoseph Expo

                  465




                  465















                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith