Modular arithmetic method for solving equations












0












$begingroup$


I understand there is a method for solving simultaneous modular equations. For example;
$$x = 2 mod{3}$$
$$x = 3 mod{5}$$
$$x = 2 mod{7}$$
We find numbers equal to the product of every given modulo except one of them - giving $5 cdot 7$, $3 cdot 7$ and $3 cdot 5$. We then find the multiplicative inverses of these numbers with modulo equal to the number missing from the product. The numbers found are then 2, 1 and 1 in this case. The value of x is then given by:
$$x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1 = 233 = 23 mod{3cdot5cdot7}$$



But I do not understand how this method correctly gives the value of $x$. I understand that the Chinese remainder theorem proves that there is a unique value of $0le x lt 3cdot5cdot7 mod{3cdot5cdot7}$ but can someone please explain why this method finds this value of x?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
    $endgroup$
    – Bill Dubuque
    Jan 31 at 18:19
















0












$begingroup$


I understand there is a method for solving simultaneous modular equations. For example;
$$x = 2 mod{3}$$
$$x = 3 mod{5}$$
$$x = 2 mod{7}$$
We find numbers equal to the product of every given modulo except one of them - giving $5 cdot 7$, $3 cdot 7$ and $3 cdot 5$. We then find the multiplicative inverses of these numbers with modulo equal to the number missing from the product. The numbers found are then 2, 1 and 1 in this case. The value of x is then given by:
$$x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1 = 233 = 23 mod{3cdot5cdot7}$$



But I do not understand how this method correctly gives the value of $x$. I understand that the Chinese remainder theorem proves that there is a unique value of $0le x lt 3cdot5cdot7 mod{3cdot5cdot7}$ but can someone please explain why this method finds this value of x?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
    $endgroup$
    – Bill Dubuque
    Jan 31 at 18:19














0












0








0





$begingroup$


I understand there is a method for solving simultaneous modular equations. For example;
$$x = 2 mod{3}$$
$$x = 3 mod{5}$$
$$x = 2 mod{7}$$
We find numbers equal to the product of every given modulo except one of them - giving $5 cdot 7$, $3 cdot 7$ and $3 cdot 5$. We then find the multiplicative inverses of these numbers with modulo equal to the number missing from the product. The numbers found are then 2, 1 and 1 in this case. The value of x is then given by:
$$x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1 = 233 = 23 mod{3cdot5cdot7}$$



But I do not understand how this method correctly gives the value of $x$. I understand that the Chinese remainder theorem proves that there is a unique value of $0le x lt 3cdot5cdot7 mod{3cdot5cdot7}$ but can someone please explain why this method finds this value of x?










share|cite|improve this question









$endgroup$




I understand there is a method for solving simultaneous modular equations. For example;
$$x = 2 mod{3}$$
$$x = 3 mod{5}$$
$$x = 2 mod{7}$$
We find numbers equal to the product of every given modulo except one of them - giving $5 cdot 7$, $3 cdot 7$ and $3 cdot 5$. We then find the multiplicative inverses of these numbers with modulo equal to the number missing from the product. The numbers found are then 2, 1 and 1 in this case. The value of x is then given by:
$$x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1 = 233 = 23 mod{3cdot5cdot7}$$



But I do not understand how this method correctly gives the value of $x$. I understand that the Chinese remainder theorem proves that there is a unique value of $0le x lt 3cdot5cdot7 mod{3cdot5cdot7}$ but can someone please explain why this method finds this value of x?







modular-arithmetic






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 17:09









Peter ForemanPeter Foreman

6,2611317




6,2611317












  • $begingroup$
    It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
    $endgroup$
    – Bill Dubuque
    Jan 31 at 18:19


















  • $begingroup$
    It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
    $endgroup$
    – Bill Dubuque
    Jan 31 at 18:19
















$begingroup$
It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
$endgroup$
– Bill Dubuque
Jan 31 at 18:19




$begingroup$
It's not clear which part proves troublesome. Often it is the linearity that I describe in my answer. If it is something else then please elaborate and I can add further details.
$endgroup$
– Bill Dubuque
Jan 31 at 18:19










3 Answers
3






active

oldest

votes


















1












$begingroup$

This is a generalisation of the formula for the solutions of a system of two congruences modulo two coprime numbers $a$ and $b$?. This formula uses a Bézout's relation: $;ua+vb=1$ and it is:
$$begin{cases}
xequiv alphamod a,\
xequiv betamod b,
end{cases}
quadtext{which is }qquad xequiv beta ua+alpha vbmod ab$$



Indeed we have $;beta ua+alpha vbequiv alpha vbequiv alphamod a$ since hand $;vbequiv 1mod a$. Similarly modulo $b$.



Now, as $v equiv b^{-1}bmod a:$ and $;uequiv a^{-1}bmod b$, this formula can be written as
$$xequiv beta, a (a^{-1}bmod b)+alpha, b(b^{-1}bmod a)mod ab.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The brave anonymous downvoter struck again!
    $endgroup$
    – Bernard
    Feb 1 at 20:47



















1












$begingroup$

It helps to highlught linearity at the heart of the Chinese Remainder Theorem [CRT] formula.



$$begin{eqnarray}
x, = &a&!color{#0a0}{overbrace{(-5cdot 7)}^{large equiv, 1 ({rm mod} color{#c00}3)}} ,+, &b& overbrace{(color{#c00}3cdot 7)}^{large equiv, 1 ({rm mod} 5)}, +, &c&overbrace{(color{#c00}3cdot 5)}^{large equiv, 1 ({rm mod} 7)}quad {bf [CRT]}\ \
Rightarrow x,equiv, &a& ({rm mod} color{#c00}3), xequiv &b& ({rm mod} 4), xequiv &c& ({rm mod} 5)\
end{eqnarray}$$



since, e.g. reduced $ $ mod $ color{#c00}3,,$ the 2nd and 3rd summands are $equiv 0,,$ both having factors of $,color{#c00}3.,$



The key idea is that the braced terms are $equiv 1$ mod one modulus, and $equiv 0 $ mod all others. More clearly, if we write the system in vector form $ xequiv (a,b,c),$ mod $,(3,5,7)$ then $rm,[CRT]$ becomes



$qquad x, :=, a,color{#0a0}{(1,0,0)} + b,(0,1,0) + c,(0,0,1)equiv (a.b,c) $ as desired. $qquad [bf Linearity]$



by the green term $,color{#0a0}{g equiv 1} ({rm mod} 3), color{#0a0}{gequiv 0} ({rm mod} 5), color{#0a0}{gequiv 0} ({rm mod} 7), $ i.e. $ color{#0a0}{gequiv (1,0,0)} {rm mod} (3,5,7), $ and similarly for $,(0,1,0),$ and $,(0,0,1).$



Thus once we compute the solutions for the "basis" vectors $(1,0,0), (0,1,0), (0,0,1)$ we can exploit [Linearity] to generate the general solution as a linear combination of these basic solutions.



Solving the basic cases is easy: $,{color{#0a0}{5,7mid g},Rightarrow, 35mid g},, $ so $bmod 3!: color{#0a0}{1equiv g} equiv 35nequiv -n,Rightarrow, nequiv -1,,$ i.e. $,n,$ is the inverse of the product $36= 5cdot 7$ of all the other moduli. Thus the common CRT formula.



The innate algebraic structure will be clarified if you later study abstract algebra, where you will learn the ring theoretic view of CRT, and vector spaces and modules.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Taking Bill Dubuque's graphic answer and graphically expanding on it:



    $x = 2 cdotoverbrace{ (5 cdot 7) cdot 2}^{equiv 1 pmod 3\ equiv 0 pmod 5\ equiv 0 pmod 7} + 3 cdot overbrace{(3 cdot 7) cdot 1}^{equiv 0 pmod 3\ equiv 1 pmod 5\ equiv 0 pmod 7} + 2 cdot overbrace{(3 cdot 5) cdot 1}^{equiv 0 pmod 3\ equiv 0 pmod 5\ equiv 1pmod 7}= overbrace{233}^{equiv 2 + 0 +0pmod 3\ equiv0+3+0 pmod 5\ equiv 0+0+2pmod 7}$



    ======



    Think about what you, yourself just stated.



    If take this sum $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 3$ it, then $(5cdot 7)$ and $2$ are inverses so $2cdot[(5cdot 7)cdot 2]pmod 3equiv 2cdot 1pmod 3 equiv 2 pmod 3$. ANd the other terms are multiples of $3$ so they are $equiv 0 pmod 3$. So $xequiv 2 pmod 3$.



    If you take that term $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 5$ it, then $3cdot 7$ and $1$ are inverses so $3cdot[(3cdot 7) cdot 1] equiv 3 cdot 1 equiv 3 pmod 5$. ANd the other terms are multiples of $5$. So the sum $x equiv 3 pmod 5$.



    And so on.



    ....



    If you want to solve



    $x equiv a pmod m$



    $x equiv b pmod n$



    $x equiv c pmod v$ then



    And assuming you were able find $(nv)^{-1}mod m; (mv)^{-1}mod n; $and $(nm)^{-1}mod v$



    Then Let $K = a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)$



    Note: $K pmod m equiv$



    $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod mequiv$



    $a*1 + [b(mv)^{-1}v]m + [c(nm)^{-1}n]m pmod mequiv$



    $a*1 + 0 + 0 equiv apmod m$.



    And likewise:



    $K pmod n equiv$



    $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod nequiv$



    $[a(nv)^{-1}v]n + b*1 + [c(nm)^{-1}m]n pmod nequiv$



    $0 + b*1 + 0 equiv bpmod n$.



    And



    $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod vequiv$



    $[a(nv)^-1n]v + [b(mv)^{-1}m]v + c*1 pmod vequiv$



    $0 + 0 + c equiv cpmod m$.



    So $K$ is A solution.



    If $m,n,v$ are pairwise relative prime then $K$ is a unique solution upto $mod nmv$.






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095169%2fmodular-arithmetic-method-for-solving-equations%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      This is a generalisation of the formula for the solutions of a system of two congruences modulo two coprime numbers $a$ and $b$?. This formula uses a Bézout's relation: $;ua+vb=1$ and it is:
      $$begin{cases}
      xequiv alphamod a,\
      xequiv betamod b,
      end{cases}
      quadtext{which is }qquad xequiv beta ua+alpha vbmod ab$$



      Indeed we have $;beta ua+alpha vbequiv alpha vbequiv alphamod a$ since hand $;vbequiv 1mod a$. Similarly modulo $b$.



      Now, as $v equiv b^{-1}bmod a:$ and $;uequiv a^{-1}bmod b$, this formula can be written as
      $$xequiv beta, a (a^{-1}bmod b)+alpha, b(b^{-1}bmod a)mod ab.$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        The brave anonymous downvoter struck again!
        $endgroup$
        – Bernard
        Feb 1 at 20:47
















      1












      $begingroup$

      This is a generalisation of the formula for the solutions of a system of two congruences modulo two coprime numbers $a$ and $b$?. This formula uses a Bézout's relation: $;ua+vb=1$ and it is:
      $$begin{cases}
      xequiv alphamod a,\
      xequiv betamod b,
      end{cases}
      quadtext{which is }qquad xequiv beta ua+alpha vbmod ab$$



      Indeed we have $;beta ua+alpha vbequiv alpha vbequiv alphamod a$ since hand $;vbequiv 1mod a$. Similarly modulo $b$.



      Now, as $v equiv b^{-1}bmod a:$ and $;uequiv a^{-1}bmod b$, this formula can be written as
      $$xequiv beta, a (a^{-1}bmod b)+alpha, b(b^{-1}bmod a)mod ab.$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        The brave anonymous downvoter struck again!
        $endgroup$
        – Bernard
        Feb 1 at 20:47














      1












      1








      1





      $begingroup$

      This is a generalisation of the formula for the solutions of a system of two congruences modulo two coprime numbers $a$ and $b$?. This formula uses a Bézout's relation: $;ua+vb=1$ and it is:
      $$begin{cases}
      xequiv alphamod a,\
      xequiv betamod b,
      end{cases}
      quadtext{which is }qquad xequiv beta ua+alpha vbmod ab$$



      Indeed we have $;beta ua+alpha vbequiv alpha vbequiv alphamod a$ since hand $;vbequiv 1mod a$. Similarly modulo $b$.



      Now, as $v equiv b^{-1}bmod a:$ and $;uequiv a^{-1}bmod b$, this formula can be written as
      $$xequiv beta, a (a^{-1}bmod b)+alpha, b(b^{-1}bmod a)mod ab.$$






      share|cite|improve this answer









      $endgroup$



      This is a generalisation of the formula for the solutions of a system of two congruences modulo two coprime numbers $a$ and $b$?. This formula uses a Bézout's relation: $;ua+vb=1$ and it is:
      $$begin{cases}
      xequiv alphamod a,\
      xequiv betamod b,
      end{cases}
      quadtext{which is }qquad xequiv beta ua+alpha vbmod ab$$



      Indeed we have $;beta ua+alpha vbequiv alpha vbequiv alphamod a$ since hand $;vbequiv 1mod a$. Similarly modulo $b$.



      Now, as $v equiv b^{-1}bmod a:$ and $;uequiv a^{-1}bmod b$, this formula can be written as
      $$xequiv beta, a (a^{-1}bmod b)+alpha, b(b^{-1}bmod a)mod ab.$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 31 at 17:41









      BernardBernard

      124k741117




      124k741117












      • $begingroup$
        The brave anonymous downvoter struck again!
        $endgroup$
        – Bernard
        Feb 1 at 20:47


















      • $begingroup$
        The brave anonymous downvoter struck again!
        $endgroup$
        – Bernard
        Feb 1 at 20:47
















      $begingroup$
      The brave anonymous downvoter struck again!
      $endgroup$
      – Bernard
      Feb 1 at 20:47




      $begingroup$
      The brave anonymous downvoter struck again!
      $endgroup$
      – Bernard
      Feb 1 at 20:47











      1












      $begingroup$

      It helps to highlught linearity at the heart of the Chinese Remainder Theorem [CRT] formula.



      $$begin{eqnarray}
      x, = &a&!color{#0a0}{overbrace{(-5cdot 7)}^{large equiv, 1 ({rm mod} color{#c00}3)}} ,+, &b& overbrace{(color{#c00}3cdot 7)}^{large equiv, 1 ({rm mod} 5)}, +, &c&overbrace{(color{#c00}3cdot 5)}^{large equiv, 1 ({rm mod} 7)}quad {bf [CRT]}\ \
      Rightarrow x,equiv, &a& ({rm mod} color{#c00}3), xequiv &b& ({rm mod} 4), xequiv &c& ({rm mod} 5)\
      end{eqnarray}$$



      since, e.g. reduced $ $ mod $ color{#c00}3,,$ the 2nd and 3rd summands are $equiv 0,,$ both having factors of $,color{#c00}3.,$



      The key idea is that the braced terms are $equiv 1$ mod one modulus, and $equiv 0 $ mod all others. More clearly, if we write the system in vector form $ xequiv (a,b,c),$ mod $,(3,5,7)$ then $rm,[CRT]$ becomes



      $qquad x, :=, a,color{#0a0}{(1,0,0)} + b,(0,1,0) + c,(0,0,1)equiv (a.b,c) $ as desired. $qquad [bf Linearity]$



      by the green term $,color{#0a0}{g equiv 1} ({rm mod} 3), color{#0a0}{gequiv 0} ({rm mod} 5), color{#0a0}{gequiv 0} ({rm mod} 7), $ i.e. $ color{#0a0}{gequiv (1,0,0)} {rm mod} (3,5,7), $ and similarly for $,(0,1,0),$ and $,(0,0,1).$



      Thus once we compute the solutions for the "basis" vectors $(1,0,0), (0,1,0), (0,0,1)$ we can exploit [Linearity] to generate the general solution as a linear combination of these basic solutions.



      Solving the basic cases is easy: $,{color{#0a0}{5,7mid g},Rightarrow, 35mid g},, $ so $bmod 3!: color{#0a0}{1equiv g} equiv 35nequiv -n,Rightarrow, nequiv -1,,$ i.e. $,n,$ is the inverse of the product $36= 5cdot 7$ of all the other moduli. Thus the common CRT formula.



      The innate algebraic structure will be clarified if you later study abstract algebra, where you will learn the ring theoretic view of CRT, and vector spaces and modules.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        It helps to highlught linearity at the heart of the Chinese Remainder Theorem [CRT] formula.



        $$begin{eqnarray}
        x, = &a&!color{#0a0}{overbrace{(-5cdot 7)}^{large equiv, 1 ({rm mod} color{#c00}3)}} ,+, &b& overbrace{(color{#c00}3cdot 7)}^{large equiv, 1 ({rm mod} 5)}, +, &c&overbrace{(color{#c00}3cdot 5)}^{large equiv, 1 ({rm mod} 7)}quad {bf [CRT]}\ \
        Rightarrow x,equiv, &a& ({rm mod} color{#c00}3), xequiv &b& ({rm mod} 4), xequiv &c& ({rm mod} 5)\
        end{eqnarray}$$



        since, e.g. reduced $ $ mod $ color{#c00}3,,$ the 2nd and 3rd summands are $equiv 0,,$ both having factors of $,color{#c00}3.,$



        The key idea is that the braced terms are $equiv 1$ mod one modulus, and $equiv 0 $ mod all others. More clearly, if we write the system in vector form $ xequiv (a,b,c),$ mod $,(3,5,7)$ then $rm,[CRT]$ becomes



        $qquad x, :=, a,color{#0a0}{(1,0,0)} + b,(0,1,0) + c,(0,0,1)equiv (a.b,c) $ as desired. $qquad [bf Linearity]$



        by the green term $,color{#0a0}{g equiv 1} ({rm mod} 3), color{#0a0}{gequiv 0} ({rm mod} 5), color{#0a0}{gequiv 0} ({rm mod} 7), $ i.e. $ color{#0a0}{gequiv (1,0,0)} {rm mod} (3,5,7), $ and similarly for $,(0,1,0),$ and $,(0,0,1).$



        Thus once we compute the solutions for the "basis" vectors $(1,0,0), (0,1,0), (0,0,1)$ we can exploit [Linearity] to generate the general solution as a linear combination of these basic solutions.



        Solving the basic cases is easy: $,{color{#0a0}{5,7mid g},Rightarrow, 35mid g},, $ so $bmod 3!: color{#0a0}{1equiv g} equiv 35nequiv -n,Rightarrow, nequiv -1,,$ i.e. $,n,$ is the inverse of the product $36= 5cdot 7$ of all the other moduli. Thus the common CRT formula.



        The innate algebraic structure will be clarified if you later study abstract algebra, where you will learn the ring theoretic view of CRT, and vector spaces and modules.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          It helps to highlught linearity at the heart of the Chinese Remainder Theorem [CRT] formula.



          $$begin{eqnarray}
          x, = &a&!color{#0a0}{overbrace{(-5cdot 7)}^{large equiv, 1 ({rm mod} color{#c00}3)}} ,+, &b& overbrace{(color{#c00}3cdot 7)}^{large equiv, 1 ({rm mod} 5)}, +, &c&overbrace{(color{#c00}3cdot 5)}^{large equiv, 1 ({rm mod} 7)}quad {bf [CRT]}\ \
          Rightarrow x,equiv, &a& ({rm mod} color{#c00}3), xequiv &b& ({rm mod} 4), xequiv &c& ({rm mod} 5)\
          end{eqnarray}$$



          since, e.g. reduced $ $ mod $ color{#c00}3,,$ the 2nd and 3rd summands are $equiv 0,,$ both having factors of $,color{#c00}3.,$



          The key idea is that the braced terms are $equiv 1$ mod one modulus, and $equiv 0 $ mod all others. More clearly, if we write the system in vector form $ xequiv (a,b,c),$ mod $,(3,5,7)$ then $rm,[CRT]$ becomes



          $qquad x, :=, a,color{#0a0}{(1,0,0)} + b,(0,1,0) + c,(0,0,1)equiv (a.b,c) $ as desired. $qquad [bf Linearity]$



          by the green term $,color{#0a0}{g equiv 1} ({rm mod} 3), color{#0a0}{gequiv 0} ({rm mod} 5), color{#0a0}{gequiv 0} ({rm mod} 7), $ i.e. $ color{#0a0}{gequiv (1,0,0)} {rm mod} (3,5,7), $ and similarly for $,(0,1,0),$ and $,(0,0,1).$



          Thus once we compute the solutions for the "basis" vectors $(1,0,0), (0,1,0), (0,0,1)$ we can exploit [Linearity] to generate the general solution as a linear combination of these basic solutions.



          Solving the basic cases is easy: $,{color{#0a0}{5,7mid g},Rightarrow, 35mid g},, $ so $bmod 3!: color{#0a0}{1equiv g} equiv 35nequiv -n,Rightarrow, nequiv -1,,$ i.e. $,n,$ is the inverse of the product $36= 5cdot 7$ of all the other moduli. Thus the common CRT formula.



          The innate algebraic structure will be clarified if you later study abstract algebra, where you will learn the ring theoretic view of CRT, and vector spaces and modules.






          share|cite|improve this answer











          $endgroup$



          It helps to highlught linearity at the heart of the Chinese Remainder Theorem [CRT] formula.



          $$begin{eqnarray}
          x, = &a&!color{#0a0}{overbrace{(-5cdot 7)}^{large equiv, 1 ({rm mod} color{#c00}3)}} ,+, &b& overbrace{(color{#c00}3cdot 7)}^{large equiv, 1 ({rm mod} 5)}, +, &c&overbrace{(color{#c00}3cdot 5)}^{large equiv, 1 ({rm mod} 7)}quad {bf [CRT]}\ \
          Rightarrow x,equiv, &a& ({rm mod} color{#c00}3), xequiv &b& ({rm mod} 4), xequiv &c& ({rm mod} 5)\
          end{eqnarray}$$



          since, e.g. reduced $ $ mod $ color{#c00}3,,$ the 2nd and 3rd summands are $equiv 0,,$ both having factors of $,color{#c00}3.,$



          The key idea is that the braced terms are $equiv 1$ mod one modulus, and $equiv 0 $ mod all others. More clearly, if we write the system in vector form $ xequiv (a,b,c),$ mod $,(3,5,7)$ then $rm,[CRT]$ becomes



          $qquad x, :=, a,color{#0a0}{(1,0,0)} + b,(0,1,0) + c,(0,0,1)equiv (a.b,c) $ as desired. $qquad [bf Linearity]$



          by the green term $,color{#0a0}{g equiv 1} ({rm mod} 3), color{#0a0}{gequiv 0} ({rm mod} 5), color{#0a0}{gequiv 0} ({rm mod} 7), $ i.e. $ color{#0a0}{gequiv (1,0,0)} {rm mod} (3,5,7), $ and similarly for $,(0,1,0),$ and $,(0,0,1).$



          Thus once we compute the solutions for the "basis" vectors $(1,0,0), (0,1,0), (0,0,1)$ we can exploit [Linearity] to generate the general solution as a linear combination of these basic solutions.



          Solving the basic cases is easy: $,{color{#0a0}{5,7mid g},Rightarrow, 35mid g},, $ so $bmod 3!: color{#0a0}{1equiv g} equiv 35nequiv -n,Rightarrow, nequiv -1,,$ i.e. $,n,$ is the inverse of the product $36= 5cdot 7$ of all the other moduli. Thus the common CRT formula.



          The innate algebraic structure will be clarified if you later study abstract algebra, where you will learn the ring theoretic view of CRT, and vector spaces and modules.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 31 at 18:32

























          answered Jan 31 at 17:57









          Bill DubuqueBill Dubuque

          214k29196655




          214k29196655























              0












              $begingroup$

              Taking Bill Dubuque's graphic answer and graphically expanding on it:



              $x = 2 cdotoverbrace{ (5 cdot 7) cdot 2}^{equiv 1 pmod 3\ equiv 0 pmod 5\ equiv 0 pmod 7} + 3 cdot overbrace{(3 cdot 7) cdot 1}^{equiv 0 pmod 3\ equiv 1 pmod 5\ equiv 0 pmod 7} + 2 cdot overbrace{(3 cdot 5) cdot 1}^{equiv 0 pmod 3\ equiv 0 pmod 5\ equiv 1pmod 7}= overbrace{233}^{equiv 2 + 0 +0pmod 3\ equiv0+3+0 pmod 5\ equiv 0+0+2pmod 7}$



              ======



              Think about what you, yourself just stated.



              If take this sum $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 3$ it, then $(5cdot 7)$ and $2$ are inverses so $2cdot[(5cdot 7)cdot 2]pmod 3equiv 2cdot 1pmod 3 equiv 2 pmod 3$. ANd the other terms are multiples of $3$ so they are $equiv 0 pmod 3$. So $xequiv 2 pmod 3$.



              If you take that term $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 5$ it, then $3cdot 7$ and $1$ are inverses so $3cdot[(3cdot 7) cdot 1] equiv 3 cdot 1 equiv 3 pmod 5$. ANd the other terms are multiples of $5$. So the sum $x equiv 3 pmod 5$.



              And so on.



              ....



              If you want to solve



              $x equiv a pmod m$



              $x equiv b pmod n$



              $x equiv c pmod v$ then



              And assuming you were able find $(nv)^{-1}mod m; (mv)^{-1}mod n; $and $(nm)^{-1}mod v$



              Then Let $K = a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)$



              Note: $K pmod m equiv$



              $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod mequiv$



              $a*1 + [b(mv)^{-1}v]m + [c(nm)^{-1}n]m pmod mequiv$



              $a*1 + 0 + 0 equiv apmod m$.



              And likewise:



              $K pmod n equiv$



              $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod nequiv$



              $[a(nv)^{-1}v]n + b*1 + [c(nm)^{-1}m]n pmod nequiv$



              $0 + b*1 + 0 equiv bpmod n$.



              And



              $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod vequiv$



              $[a(nv)^-1n]v + [b(mv)^{-1}m]v + c*1 pmod vequiv$



              $0 + 0 + c equiv cpmod m$.



              So $K$ is A solution.



              If $m,n,v$ are pairwise relative prime then $K$ is a unique solution upto $mod nmv$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Taking Bill Dubuque's graphic answer and graphically expanding on it:



                $x = 2 cdotoverbrace{ (5 cdot 7) cdot 2}^{equiv 1 pmod 3\ equiv 0 pmod 5\ equiv 0 pmod 7} + 3 cdot overbrace{(3 cdot 7) cdot 1}^{equiv 0 pmod 3\ equiv 1 pmod 5\ equiv 0 pmod 7} + 2 cdot overbrace{(3 cdot 5) cdot 1}^{equiv 0 pmod 3\ equiv 0 pmod 5\ equiv 1pmod 7}= overbrace{233}^{equiv 2 + 0 +0pmod 3\ equiv0+3+0 pmod 5\ equiv 0+0+2pmod 7}$



                ======



                Think about what you, yourself just stated.



                If take this sum $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 3$ it, then $(5cdot 7)$ and $2$ are inverses so $2cdot[(5cdot 7)cdot 2]pmod 3equiv 2cdot 1pmod 3 equiv 2 pmod 3$. ANd the other terms are multiples of $3$ so they are $equiv 0 pmod 3$. So $xequiv 2 pmod 3$.



                If you take that term $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 5$ it, then $3cdot 7$ and $1$ are inverses so $3cdot[(3cdot 7) cdot 1] equiv 3 cdot 1 equiv 3 pmod 5$. ANd the other terms are multiples of $5$. So the sum $x equiv 3 pmod 5$.



                And so on.



                ....



                If you want to solve



                $x equiv a pmod m$



                $x equiv b pmod n$



                $x equiv c pmod v$ then



                And assuming you were able find $(nv)^{-1}mod m; (mv)^{-1}mod n; $and $(nm)^{-1}mod v$



                Then Let $K = a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)$



                Note: $K pmod m equiv$



                $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod mequiv$



                $a*1 + [b(mv)^{-1}v]m + [c(nm)^{-1}n]m pmod mequiv$



                $a*1 + 0 + 0 equiv apmod m$.



                And likewise:



                $K pmod n equiv$



                $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod nequiv$



                $[a(nv)^{-1}v]n + b*1 + [c(nm)^{-1}m]n pmod nequiv$



                $0 + b*1 + 0 equiv bpmod n$.



                And



                $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod vequiv$



                $[a(nv)^-1n]v + [b(mv)^{-1}m]v + c*1 pmod vequiv$



                $0 + 0 + c equiv cpmod m$.



                So $K$ is A solution.



                If $m,n,v$ are pairwise relative prime then $K$ is a unique solution upto $mod nmv$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Taking Bill Dubuque's graphic answer and graphically expanding on it:



                  $x = 2 cdotoverbrace{ (5 cdot 7) cdot 2}^{equiv 1 pmod 3\ equiv 0 pmod 5\ equiv 0 pmod 7} + 3 cdot overbrace{(3 cdot 7) cdot 1}^{equiv 0 pmod 3\ equiv 1 pmod 5\ equiv 0 pmod 7} + 2 cdot overbrace{(3 cdot 5) cdot 1}^{equiv 0 pmod 3\ equiv 0 pmod 5\ equiv 1pmod 7}= overbrace{233}^{equiv 2 + 0 +0pmod 3\ equiv0+3+0 pmod 5\ equiv 0+0+2pmod 7}$



                  ======



                  Think about what you, yourself just stated.



                  If take this sum $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 3$ it, then $(5cdot 7)$ and $2$ are inverses so $2cdot[(5cdot 7)cdot 2]pmod 3equiv 2cdot 1pmod 3 equiv 2 pmod 3$. ANd the other terms are multiples of $3$ so they are $equiv 0 pmod 3$. So $xequiv 2 pmod 3$.



                  If you take that term $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 5$ it, then $3cdot 7$ and $1$ are inverses so $3cdot[(3cdot 7) cdot 1] equiv 3 cdot 1 equiv 3 pmod 5$. ANd the other terms are multiples of $5$. So the sum $x equiv 3 pmod 5$.



                  And so on.



                  ....



                  If you want to solve



                  $x equiv a pmod m$



                  $x equiv b pmod n$



                  $x equiv c pmod v$ then



                  And assuming you were able find $(nv)^{-1}mod m; (mv)^{-1}mod n; $and $(nm)^{-1}mod v$



                  Then Let $K = a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)$



                  Note: $K pmod m equiv$



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod mequiv$



                  $a*1 + [b(mv)^{-1}v]m + [c(nm)^{-1}n]m pmod mequiv$



                  $a*1 + 0 + 0 equiv apmod m$.



                  And likewise:



                  $K pmod n equiv$



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod nequiv$



                  $[a(nv)^{-1}v]n + b*1 + [c(nm)^{-1}m]n pmod nequiv$



                  $0 + b*1 + 0 equiv bpmod n$.



                  And



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod vequiv$



                  $[a(nv)^-1n]v + [b(mv)^{-1}m]v + c*1 pmod vequiv$



                  $0 + 0 + c equiv cpmod m$.



                  So $K$ is A solution.



                  If $m,n,v$ are pairwise relative prime then $K$ is a unique solution upto $mod nmv$.






                  share|cite|improve this answer











                  $endgroup$



                  Taking Bill Dubuque's graphic answer and graphically expanding on it:



                  $x = 2 cdotoverbrace{ (5 cdot 7) cdot 2}^{equiv 1 pmod 3\ equiv 0 pmod 5\ equiv 0 pmod 7} + 3 cdot overbrace{(3 cdot 7) cdot 1}^{equiv 0 pmod 3\ equiv 1 pmod 5\ equiv 0 pmod 7} + 2 cdot overbrace{(3 cdot 5) cdot 1}^{equiv 0 pmod 3\ equiv 0 pmod 5\ equiv 1pmod 7}= overbrace{233}^{equiv 2 + 0 +0pmod 3\ equiv0+3+0 pmod 5\ equiv 0+0+2pmod 7}$



                  ======



                  Think about what you, yourself just stated.



                  If take this sum $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 3$ it, then $(5cdot 7)$ and $2$ are inverses so $2cdot[(5cdot 7)cdot 2]pmod 3equiv 2cdot 1pmod 3 equiv 2 pmod 3$. ANd the other terms are multiples of $3$ so they are $equiv 0 pmod 3$. So $xequiv 2 pmod 3$.



                  If you take that term $x = 2 cdot (5 cdot 7) cdot 2 + 3 cdot (3 cdot 7) cdot 1 + 2 cdot (3 cdot 5) cdot 1$ and $mod 5$ it, then $3cdot 7$ and $1$ are inverses so $3cdot[(3cdot 7) cdot 1] equiv 3 cdot 1 equiv 3 pmod 5$. ANd the other terms are multiples of $5$. So the sum $x equiv 3 pmod 5$.



                  And so on.



                  ....



                  If you want to solve



                  $x equiv a pmod m$



                  $x equiv b pmod n$



                  $x equiv c pmod v$ then



                  And assuming you were able find $(nv)^{-1}mod m; (mv)^{-1}mod n; $and $(nm)^{-1}mod v$



                  Then Let $K = a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)$



                  Note: $K pmod m equiv$



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod mequiv$



                  $a*1 + [b(mv)^{-1}v]m + [c(nm)^{-1}n]m pmod mequiv$



                  $a*1 + 0 + 0 equiv apmod m$.



                  And likewise:



                  $K pmod n equiv$



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod nequiv$



                  $[a(nv)^{-1}v]n + b*1 + [c(nm)^{-1}m]n pmod nequiv$



                  $0 + b*1 + 0 equiv bpmod n$.



                  And



                  $a(nv)^{-1}(nv) + b (mv)^{-1}(mv) + c(nm)^{-1}(nm)pmod vequiv$



                  $[a(nv)^-1n]v + [b(mv)^{-1}m]v + c*1 pmod vequiv$



                  $0 + 0 + c equiv cpmod m$.



                  So $K$ is A solution.



                  If $m,n,v$ are pairwise relative prime then $K$ is a unique solution upto $mod nmv$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 31 at 18:38

























                  answered Jan 31 at 18:01









                  fleabloodfleablood

                  73.8k22891




                  73.8k22891






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095169%2fmodular-arithmetic-method-for-solving-equations%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      Npm cannot find a required file even through it is in the searched directory