orthogonal function and inner product space
$begingroup$
Consider the inner product space $$langle f,g rangle= int_{-1}^{1} f(x) g(x) dx $$
find the non zero orthogonal function with respect to $f(x)=1$ in the subspace span of ${1,e^{x}}$ ?
inner-product-space
$endgroup$
add a comment |
$begingroup$
Consider the inner product space $$langle f,g rangle= int_{-1}^{1} f(x) g(x) dx $$
find the non zero orthogonal function with respect to $f(x)=1$ in the subspace span of ${1,e^{x}}$ ?
inner-product-space
$endgroup$
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27
add a comment |
$begingroup$
Consider the inner product space $$langle f,g rangle= int_{-1}^{1} f(x) g(x) dx $$
find the non zero orthogonal function with respect to $f(x)=1$ in the subspace span of ${1,e^{x}}$ ?
inner-product-space
$endgroup$
Consider the inner product space $$langle f,g rangle= int_{-1}^{1} f(x) g(x) dx $$
find the non zero orthogonal function with respect to $f(x)=1$ in the subspace span of ${1,e^{x}}$ ?
inner-product-space
inner-product-space
edited Jan 31 at 19:28


Ahmad Bazzi
8,4912824
8,4912824
asked Jan 31 at 19:23
Allic MendoncaAllic Mendonca
12
12
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27
add a comment |
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you compute the orthogonal projektion $P(e^x)$ on span(1). Then $e^x - P(e^x)$ is in the orthogonal complement of span(1).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095340%2forthogonal-function-and-inner-product-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you compute the orthogonal projektion $P(e^x)$ on span(1). Then $e^x - P(e^x)$ is in the orthogonal complement of span(1).
$endgroup$
add a comment |
$begingroup$
If you compute the orthogonal projektion $P(e^x)$ on span(1). Then $e^x - P(e^x)$ is in the orthogonal complement of span(1).
$endgroup$
add a comment |
$begingroup$
If you compute the orthogonal projektion $P(e^x)$ on span(1). Then $e^x - P(e^x)$ is in the orthogonal complement of span(1).
$endgroup$
If you compute the orthogonal projektion $P(e^x)$ on span(1). Then $e^x - P(e^x)$ is in the orthogonal complement of span(1).
answered Jan 31 at 19:35


Leander Tilsted KristensenLeander Tilsted Kristensen
664
664
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095340%2forthogonal-function-and-inner-product-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
hi please use LaTeX as I did right now. Also please make sure the notation corresponds to your true question.
$endgroup$
– Ahmad Bazzi
Jan 31 at 19:26
$begingroup$
-1 to 1 is the interval. can you add it too?
$endgroup$
– Allic Mendonca
Jan 31 at 19:27