Prove that $underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx$, $xi$ a step-function.












2












$begingroup$



Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
$$
underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
$$

where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.



Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).




Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
$$
underline{int_a^b} f(x)dx = sup_{P} s(f;P),
$$

where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.



Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
$$
int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
$$

Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
$$
int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$



Thus the supremum is attained. Therefore,
$$
underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
$$



Is my proof correct? If not, why?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
    $$
    underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
    $$

    where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.



    Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).




    Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
    $$
    underline{int_a^b} f(x)dx = sup_{P} s(f;P),
    $$

    where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.



    Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
    $$
    int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
    $$

    Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
    $$
    int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
    $$



    Thus the supremum is attained. Therefore,
    $$
    underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
    $$



    Is my proof correct? If not, why?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
      $$
      underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
      $$

      where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.



      Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).




      Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
      $$
      underline{int_a^b} f(x)dx = sup_{P} s(f;P),
      $$

      where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.



      Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
      $$
      int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
      $$

      Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
      $$
      int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
      $$



      Thus the supremum is attained. Therefore,
      $$
      underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
      $$



      Is my proof correct? If not, why?










      share|cite|improve this question











      $endgroup$





      Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
      $$
      underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
      $$

      where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.



      Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).




      Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
      $$
      underline{int_a^b} f(x)dx = sup_{P} s(f;P),
      $$

      where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.



      Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
      $$
      int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
      $$

      Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
      $$
      int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
      $$



      Thus the supremum is attained. Therefore,
      $$
      underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
      $$



      Is my proof correct? If not, why?







      real-analysis proof-verification riemann-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 31 at 17:23







      Ali Khan

















      asked Nov 3 '18 at 2:51









      Ali KhanAli Khan

      17312




      17312






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          You are close to being correct.



          The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing



          $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$



          but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication



          $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
          $$



          The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.



          What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,



          $$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$



          Since $X_1 subset X$ it follows that



          $$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$



          and



          $$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$



          Recall that you correctly proved the far right inequality in (*), and we have as desired,



          $$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982485%2fprove-that-underline-int-ab-fxdx-sup-xi-int-ab-xixdx-xi-a-st%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            You are close to being correct.



            The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing



            $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$



            but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication



            $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
            $$



            The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.



            What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,



            $$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$



            Since $X_1 subset X$ it follows that



            $$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$



            and



            $$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$



            Recall that you correctly proved the far right inequality in (*), and we have as desired,



            $$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              You are close to being correct.



              The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing



              $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$



              but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication



              $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
              $$



              The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.



              What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,



              $$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$



              Since $X_1 subset X$ it follows that



              $$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$



              and



              $$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$



              Recall that you correctly proved the far right inequality in (*), and we have as desired,



              $$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                You are close to being correct.



                The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing



                $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$



                but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication



                $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
                $$



                The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.



                What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,



                $$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$



                Since $X_1 subset X$ it follows that



                $$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$



                and



                $$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$



                Recall that you correctly proved the far right inequality in (*), and we have as desired,



                $$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$






                share|cite|improve this answer









                $endgroup$



                You are close to being correct.



                The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing



                $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$



                but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication



                $$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
                $$



                The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.



                What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,



                $$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$



                Since $X_1 subset X$ it follows that



                $$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$



                and



                $$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$



                Recall that you correctly proved the far right inequality in (*), and we have as desired,



                $$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 3 '18 at 5:01









                RRLRRL

                53.5k52574




                53.5k52574






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982485%2fprove-that-underline-int-ab-fxdx-sup-xi-int-ab-xixdx-xi-a-st%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith