Prove that $underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx$, $xi$ a step-function.
$begingroup$
Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
$$
underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
$$
where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.
Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).
Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
$$
underline{int_a^b} f(x)dx = sup_{P} s(f;P),
$$
where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.
Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
$$
int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
$$
Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
$$
int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
Thus the supremum is attained. Therefore,
$$
underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
$$
Is my proof correct? If not, why?
real-analysis proof-verification riemann-integration
$endgroup$
add a comment |
$begingroup$
Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
$$
underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
$$
where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.
Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).
Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
$$
underline{int_a^b} f(x)dx = sup_{P} s(f;P),
$$
where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.
Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
$$
int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
$$
Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
$$
int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
Thus the supremum is attained. Therefore,
$$
underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
$$
Is my proof correct? If not, why?
real-analysis proof-verification riemann-integration
$endgroup$
add a comment |
$begingroup$
Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
$$
underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
$$
where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.
Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).
Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
$$
underline{int_a^b} f(x)dx = sup_{P} s(f;P),
$$
where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.
Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
$$
int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
$$
Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
$$
int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
Thus the supremum is attained. Therefore,
$$
underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
$$
Is my proof correct? If not, why?
real-analysis proof-verification riemann-integration
$endgroup$
Let $f:[a,b]tomathbb R$ be a bounded nonnegative function. Prove that
$$
underline{int_a^b} f(x)dx=sup_{xi}int_a^b xi(x)dx,
$$
where $xi$ belongs to the set of step-functions such that $xi(x)leq f(x)$ for all $xin[a,b]$.
Show that an analogous result holds if we take $xi$ continuous or $xi$ integrable (keeping the hypothesis $xi(x)leq f(x)$ for all $xin[a,b]$).
Let $X$ be the set of step-functions $xi:[a,b]tomathbb R$ such that $xi(x)leq f(x)$ for all $xin[a,b]$. Take $P={a=t_0,t_1,ldots,t_{n-1},t_n=b}$ be a partition of $[a,b]$. So
$$
underline{int_a^b} f(x)dx = sup_{P} s(f;P),
$$
where $s(f;P)=sum_{i=1}^n m_i(f)(t_i-t_{i-1})$ and $m_i(f)=underset{xin[t_{i-1},t_i]}{inf} f(x)$.
Let $xiin X$. From $xi(x)leq f(x)$ for all $xin[a,b]$, we get
$$
int_a^b xi(x)dx=underline{int_a^b} xi(x)dxleq underline{int_a^b} f(x)dx Longrightarrow underset{xi}{sup} int_a^b xi(x)dx leq underline{int_a^b} f(x)dx.
$$
Define $xi_1:[a,b]tomathbb R$ by $xi_1(x)=m_i(f)$ for all $xin[t_{i-1},t_i]$. Hence,
$$
int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
Thus the supremum is attained. Therefore,
$$
underset{xi}{sup} int_a^b xi(x)dx = underline{int_a^b} f(x)dx.
$$
Is my proof correct? If not, why?
real-analysis proof-verification riemann-integration
real-analysis proof-verification riemann-integration
edited Jan 31 at 17:23
Ali Khan
asked Nov 3 '18 at 2:51
Ali KhanAli Khan
17312
17312
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You are close to being correct.
The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$
but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.
What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,
$$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$
Since $X_1 subset X$ it follows that
$$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$
and
$$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$
Recall that you correctly proved the far right inequality in (*), and we have as desired,
$$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982485%2fprove-that-underline-int-ab-fxdx-sup-xi-int-ab-xixdx-xi-a-st%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are close to being correct.
The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$
but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.
What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,
$$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$
Since $X_1 subset X$ it follows that
$$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$
and
$$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$
Recall that you correctly proved the far right inequality in (*), and we have as desired,
$$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$
$endgroup$
add a comment |
$begingroup$
You are close to being correct.
The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$
but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.
What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,
$$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$
Since $X_1 subset X$ it follows that
$$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$
and
$$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$
Recall that you correctly proved the far right inequality in (*), and we have as desired,
$$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$
$endgroup$
add a comment |
$begingroup$
You are close to being correct.
The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$
but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.
What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,
$$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$
Since $X_1 subset X$ it follows that
$$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$
and
$$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$
Recall that you correctly proved the far right inequality in (*), and we have as desired,
$$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$
$endgroup$
You are close to being correct.
The function $xi_1$ you introduce belongs to $X_1$, the collection of step functions dominated by $f$ that correspond to lower Riemann sums. You are correct in writing
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) $$
but not correct in claiming attainment of the supremum by a step fuction through the subsequent implication
$$int_a^b xi_1(x)dx = sum_{i=1}^n m_i(f)(t_i-t_{i-1}) = s(f;P) Longrightarrow int_a^b xi_1(x)dx = sup_{P} s(f;P)
$$
The equality $int_a^b xi_1(x)dx = s(f;P)$ for a specific partition does not imply $int_a^b xi_1(x)dx = sup_{P} s(f;P)$.
What is true, however, is that, since there is a one-to-one correspondence between functions $xi_1 in X_1$ and lower sums,
$$sup_{xi_1 in X_1}int_a^b xi_1(x)dx = sup_{P} s(f;P) = underline{int_a^b} f(x)dx$$
Since $X_1 subset X$ it follows that
$$left{int_a^b xi_1(x) , dx ,,|,, xi_1 in X_1right} subset left{int_a^b xi(x) , dx ,,|,, xi in Xright},$$
and
$$tag{*}underline{int_a^b} f(x),dx = sup_{xi_1 in X_1} int_a^b xi_1(x) , dx leqslant sup_{xi in X} int_a^b xi(x) , dx leqslant underline{int_a^b} f(x),dx $$
Recall that you correctly proved the far right inequality in (*), and we have as desired,
$$underline{int_a^b} f(x),dx = sup_{xi in X} int_a^b xi(x) , dx $$
answered Nov 3 '18 at 5:01
RRLRRL
53.5k52574
53.5k52574
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982485%2fprove-that-underline-int-ab-fxdx-sup-xi-int-ab-xixdx-xi-a-st%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown