Show that $e^{X^2/2} in L^1$ iff $e^{XY} in L^1$ iff $e^{|XY|} in L^1$












6












$begingroup$


let $X, Y$ be two identically distributed (both are $mathcal{N}(0,1)$) independent random variables



show that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 iff e^{|XY|} in L^1$.



my attempt :



1st equivalence :



$$begin{align}
mathbb{E}[e^{XY}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{xy}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx =frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{xy-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{(x-y)^2}{2}}dydx \
&= frac{1}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{x^2}{2}}int_{mathbb{R}}frac{1}{sqrt{2pi}}e^{-frac{u^2}{2}}dudx \
& = mathbb{E}[e^{frac{X^2}{2}}]
end{align} $$



I mean yeah this kinda proves that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 $



but something is bothering me,



because $mathbb{E}[e^{frac{X^2}{2}}] = frac{1}{sqrt{2pi}}int_{mathbb{R}}dx = +infty$



Q1 :




can't we just say that $e^{frac{X^2}{2}} in L^1$ is a false claim therefore it can imply anything we desire ?




second equivalence : from the fact that $0< e^{XY} leq e^{|XY|}$



we conclude that $ e^{|XY|} in L^1 implies e^{XY} in L^1$



$$begin{align}
mathbb{E}[e^{|XY|}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{|xy|}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{|xy|}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{|xy|}e^{-frac{y^2}{2}}dy)dx \
&= frac{1}{2pi}[int_{0}^{+infty}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{-xy}e^{-frac{y^2}{2}}dy)dx +int_{-infty}^{0}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{-xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{xy}e^{-frac{y^2}{2}}dy)dx]\
& leq text{Constant}[mathbb{E}[e^{XY}] + mathbb{E}[e^{-XY}] ] = text{Constant}_2[mathbb{E}[e^{XY}]]
end{align} $$



I used the fact that $-X$ and $Y$ are independant and that $X = -X, text{in distribution}$



Q2 :




was my attempt at proving 2nd equivalence correct ?




thanks !



edit 1 : pic of the original problem (it's in french) see comment section below for translation










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
    $endgroup$
    – Did
    Feb 1 at 21:29










  • $begingroup$
    @Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
    $endgroup$
    – rapidracim
    Feb 1 at 21:36










  • $begingroup$
    "Click below to consent to the use of this technology across the web" No thanks.
    $endgroup$
    – Did
    Feb 1 at 22:18










  • $begingroup$
    @Did link is messy ? I added the pic to my post for more convenience.
    $endgroup$
    – rapidracim
    Feb 1 at 22:31






  • 1




    $begingroup$
    Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
    $endgroup$
    – Did
    Feb 1 at 22:42
















6












$begingroup$


let $X, Y$ be two identically distributed (both are $mathcal{N}(0,1)$) independent random variables



show that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 iff e^{|XY|} in L^1$.



my attempt :



1st equivalence :



$$begin{align}
mathbb{E}[e^{XY}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{xy}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx =frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{xy-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{(x-y)^2}{2}}dydx \
&= frac{1}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{x^2}{2}}int_{mathbb{R}}frac{1}{sqrt{2pi}}e^{-frac{u^2}{2}}dudx \
& = mathbb{E}[e^{frac{X^2}{2}}]
end{align} $$



I mean yeah this kinda proves that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 $



but something is bothering me,



because $mathbb{E}[e^{frac{X^2}{2}}] = frac{1}{sqrt{2pi}}int_{mathbb{R}}dx = +infty$



Q1 :




can't we just say that $e^{frac{X^2}{2}} in L^1$ is a false claim therefore it can imply anything we desire ?




second equivalence : from the fact that $0< e^{XY} leq e^{|XY|}$



we conclude that $ e^{|XY|} in L^1 implies e^{XY} in L^1$



$$begin{align}
mathbb{E}[e^{|XY|}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{|xy|}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{|xy|}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{|xy|}e^{-frac{y^2}{2}}dy)dx \
&= frac{1}{2pi}[int_{0}^{+infty}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{-xy}e^{-frac{y^2}{2}}dy)dx +int_{-infty}^{0}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{-xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{xy}e^{-frac{y^2}{2}}dy)dx]\
& leq text{Constant}[mathbb{E}[e^{XY}] + mathbb{E}[e^{-XY}] ] = text{Constant}_2[mathbb{E}[e^{XY}]]
end{align} $$



I used the fact that $-X$ and $Y$ are independant and that $X = -X, text{in distribution}$



Q2 :




was my attempt at proving 2nd equivalence correct ?




thanks !



edit 1 : pic of the original problem (it's in french) see comment section below for translation










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
    $endgroup$
    – Did
    Feb 1 at 21:29










  • $begingroup$
    @Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
    $endgroup$
    – rapidracim
    Feb 1 at 21:36










  • $begingroup$
    "Click below to consent to the use of this technology across the web" No thanks.
    $endgroup$
    – Did
    Feb 1 at 22:18










  • $begingroup$
    @Did link is messy ? I added the pic to my post for more convenience.
    $endgroup$
    – rapidracim
    Feb 1 at 22:31






  • 1




    $begingroup$
    Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
    $endgroup$
    – Did
    Feb 1 at 22:42














6












6








6


1



$begingroup$


let $X, Y$ be two identically distributed (both are $mathcal{N}(0,1)$) independent random variables



show that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 iff e^{|XY|} in L^1$.



my attempt :



1st equivalence :



$$begin{align}
mathbb{E}[e^{XY}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{xy}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx =frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{xy-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{(x-y)^2}{2}}dydx \
&= frac{1}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{x^2}{2}}int_{mathbb{R}}frac{1}{sqrt{2pi}}e^{-frac{u^2}{2}}dudx \
& = mathbb{E}[e^{frac{X^2}{2}}]
end{align} $$



I mean yeah this kinda proves that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 $



but something is bothering me,



because $mathbb{E}[e^{frac{X^2}{2}}] = frac{1}{sqrt{2pi}}int_{mathbb{R}}dx = +infty$



Q1 :




can't we just say that $e^{frac{X^2}{2}} in L^1$ is a false claim therefore it can imply anything we desire ?




second equivalence : from the fact that $0< e^{XY} leq e^{|XY|}$



we conclude that $ e^{|XY|} in L^1 implies e^{XY} in L^1$



$$begin{align}
mathbb{E}[e^{|XY|}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{|xy|}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{|xy|}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{|xy|}e^{-frac{y^2}{2}}dy)dx \
&= frac{1}{2pi}[int_{0}^{+infty}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{-xy}e^{-frac{y^2}{2}}dy)dx +int_{-infty}^{0}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{-xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{xy}e^{-frac{y^2}{2}}dy)dx]\
& leq text{Constant}[mathbb{E}[e^{XY}] + mathbb{E}[e^{-XY}] ] = text{Constant}_2[mathbb{E}[e^{XY}]]
end{align} $$



I used the fact that $-X$ and $Y$ are independant and that $X = -X, text{in distribution}$



Q2 :




was my attempt at proving 2nd equivalence correct ?




thanks !



edit 1 : pic of the original problem (it's in french) see comment section below for translation










share|cite|improve this question











$endgroup$




let $X, Y$ be two identically distributed (both are $mathcal{N}(0,1)$) independent random variables



show that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 iff e^{|XY|} in L^1$.



my attempt :



1st equivalence :



$$begin{align}
mathbb{E}[e^{XY}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{xy}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx =frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{xy-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{(x-y)^2}{2}}dydx \
&= frac{1}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}e^{-frac{x^2}{2}}int_{mathbb{R}}frac{1}{sqrt{2pi}}e^{-frac{u^2}{2}}dudx \
& = mathbb{E}[e^{frac{X^2}{2}}]
end{align} $$



I mean yeah this kinda proves that $e^{frac{X^2}{2}} in L^1 iff e^{XY} in L^1 $



but something is bothering me,



because $mathbb{E}[e^{frac{X^2}{2}}] = frac{1}{sqrt{2pi}}int_{mathbb{R}}dx = +infty$



Q1 :




can't we just say that $e^{frac{X^2}{2}} in L^1$ is a false claim therefore it can imply anything we desire ?




second equivalence : from the fact that $0< e^{XY} leq e^{|XY|}$



we conclude that $ e^{|XY|} in L^1 implies e^{XY} in L^1$



$$begin{align}
mathbb{E}[e^{|XY|}] &= frac{1}{2pi}int_{mathbb{R}}int_{mathbb{R}}e^{|xy|}e^{-frac{x^2}{2}}e^{-frac{y^2}{2}}dydx \
&=frac{1}{2pi}int_{mathbb{R}}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{|xy|}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{|xy|}e^{-frac{y^2}{2}}dy)dx \
&= frac{1}{2pi}[int_{0}^{+infty}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{-xy}e^{-frac{y^2}{2}}dy)dx +int_{-infty}^{0}e^{-frac{x^2}{2}}(int_{0}^{+infty}e^{-xy}e^{-frac{y^2}{2}}dy +int_{-infty}^{0}e^{xy}e^{-frac{y^2}{2}}dy)dx]\
& leq text{Constant}[mathbb{E}[e^{XY}] + mathbb{E}[e^{-XY}] ] = text{Constant}_2[mathbb{E}[e^{XY}]]
end{align} $$



I used the fact that $-X$ and $Y$ are independant and that $X = -X, text{in distribution}$



Q2 :




was my attempt at proving 2nd equivalence correct ?




thanks !



edit 1 : pic of the original problem (it's in french) see comment section below for translation







probability-theory lp-spaces expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 22:44









Did

249k23228466




249k23228466










asked Feb 1 at 17:44









rapidracimrapidracim

1,7441419




1,7441419








  • 1




    $begingroup$
    Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
    $endgroup$
    – Did
    Feb 1 at 21:29










  • $begingroup$
    @Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
    $endgroup$
    – rapidracim
    Feb 1 at 21:36










  • $begingroup$
    "Click below to consent to the use of this technology across the web" No thanks.
    $endgroup$
    – Did
    Feb 1 at 22:18










  • $begingroup$
    @Did link is messy ? I added the pic to my post for more convenience.
    $endgroup$
    – rapidracim
    Feb 1 at 22:31






  • 1




    $begingroup$
    Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
    $endgroup$
    – Did
    Feb 1 at 22:42














  • 1




    $begingroup$
    Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
    $endgroup$
    – Did
    Feb 1 at 21:29










  • $begingroup$
    @Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
    $endgroup$
    – rapidracim
    Feb 1 at 21:36










  • $begingroup$
    "Click below to consent to the use of this technology across the web" No thanks.
    $endgroup$
    – Did
    Feb 1 at 22:18










  • $begingroup$
    @Did link is messy ? I added the pic to my post for more convenience.
    $endgroup$
    – rapidracim
    Feb 1 at 22:31






  • 1




    $begingroup$
    Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
    $endgroup$
    – Did
    Feb 1 at 22:42








1




1




$begingroup$
Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
$endgroup$
– Did
Feb 1 at 21:29




$begingroup$
Are you sure you were asked to prove these (rather odd) equivalences, or did you make them up yourself, to solve another problem?
$endgroup$
– Did
Feb 1 at 21:29












$begingroup$
@Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
$endgroup$
– rapidracim
Feb 1 at 21:36




$begingroup$
@Did here is a pic (imgur.com/a/5AgV1c8) of the problem, it's from an exam. calculer means 'compute', montrer que means 'show that', sans means 'without' and $M_x$ here denotes the moment generating function
$endgroup$
– rapidracim
Feb 1 at 21:36












$begingroup$
"Click below to consent to the use of this technology across the web" No thanks.
$endgroup$
– Did
Feb 1 at 22:18




$begingroup$
"Click below to consent to the use of this technology across the web" No thanks.
$endgroup$
– Did
Feb 1 at 22:18












$begingroup$
@Did link is messy ? I added the pic to my post for more convenience.
$endgroup$
– rapidracim
Feb 1 at 22:31




$begingroup$
@Did link is messy ? I added the pic to my post for more convenience.
$endgroup$
– rapidracim
Feb 1 at 22:31




1




1




$begingroup$
Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
$endgroup$
– Did
Feb 1 at 22:42




$begingroup$
Hmmm... Actually the whole exercise is wrong since, the random variable $e^{XY}$ failing to be integrable, the conditional expectation $E(e^{XY}mid X)$ does not exist.
$endgroup$
– Did
Feb 1 at 22:42










1 Answer
1






active

oldest

votes


















1












$begingroup$

$E[e^{XY}|X]$ exists since $0 leq e^{XY}$ (it's an extension from $L^2$ to non negative variables!!)



Let's suppose that we don't know the distribution of $X$. And suppose that $E[e^{frac{X^2}{2}}]<+infty$



Observe that:



$$frac{1}{sqrt{2pi}}int_{mathbb{R}}(int_{mathbb{R}}e^{|xy|}e^{-frac{1}{2}y^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]0;+infty[}e^{-frac{1}{2}(y-|x|)^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]-|x|;+infty[}e^{-frac{1}{2}u^2}du)dP_X(x) leq frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{mathbb{R}}e^{-frac{1}{2}u^2}du)dP_X(x) leq 2E[e^{frac{X^2}{2}}]<+infty$$



And then the equivalence!! (the exercise is true if the distribution of $X$ is unknown)






share|cite|improve this answer









$endgroup$













  • $begingroup$
    great detail concerning the distribution of $X$
    $endgroup$
    – rapidracim
    Feb 2 at 9:35










  • $begingroup$
    From where did you bring the exercise?
    $endgroup$
    – mathex
    Feb 2 at 9:36










  • $begingroup$
    We don't need to know the distribution of X. So the exercise is true!
    $endgroup$
    – mathex
    Feb 2 at 9:38










  • $begingroup$
    it's from an exam, the teacher said he found it in this book : amazon.fr/…
    $endgroup$
    – rapidracim
    Feb 2 at 9:42














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096530%2fshow-that-ex2-2-in-l1-iff-exy-in-l1-iff-exy-in-l1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$E[e^{XY}|X]$ exists since $0 leq e^{XY}$ (it's an extension from $L^2$ to non negative variables!!)



Let's suppose that we don't know the distribution of $X$. And suppose that $E[e^{frac{X^2}{2}}]<+infty$



Observe that:



$$frac{1}{sqrt{2pi}}int_{mathbb{R}}(int_{mathbb{R}}e^{|xy|}e^{-frac{1}{2}y^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]0;+infty[}e^{-frac{1}{2}(y-|x|)^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]-|x|;+infty[}e^{-frac{1}{2}u^2}du)dP_X(x) leq frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{mathbb{R}}e^{-frac{1}{2}u^2}du)dP_X(x) leq 2E[e^{frac{X^2}{2}}]<+infty$$



And then the equivalence!! (the exercise is true if the distribution of $X$ is unknown)






share|cite|improve this answer









$endgroup$













  • $begingroup$
    great detail concerning the distribution of $X$
    $endgroup$
    – rapidracim
    Feb 2 at 9:35










  • $begingroup$
    From where did you bring the exercise?
    $endgroup$
    – mathex
    Feb 2 at 9:36










  • $begingroup$
    We don't need to know the distribution of X. So the exercise is true!
    $endgroup$
    – mathex
    Feb 2 at 9:38










  • $begingroup$
    it's from an exam, the teacher said he found it in this book : amazon.fr/…
    $endgroup$
    – rapidracim
    Feb 2 at 9:42


















1












$begingroup$

$E[e^{XY}|X]$ exists since $0 leq e^{XY}$ (it's an extension from $L^2$ to non negative variables!!)



Let's suppose that we don't know the distribution of $X$. And suppose that $E[e^{frac{X^2}{2}}]<+infty$



Observe that:



$$frac{1}{sqrt{2pi}}int_{mathbb{R}}(int_{mathbb{R}}e^{|xy|}e^{-frac{1}{2}y^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]0;+infty[}e^{-frac{1}{2}(y-|x|)^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]-|x|;+infty[}e^{-frac{1}{2}u^2}du)dP_X(x) leq frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{mathbb{R}}e^{-frac{1}{2}u^2}du)dP_X(x) leq 2E[e^{frac{X^2}{2}}]<+infty$$



And then the equivalence!! (the exercise is true if the distribution of $X$ is unknown)






share|cite|improve this answer









$endgroup$













  • $begingroup$
    great detail concerning the distribution of $X$
    $endgroup$
    – rapidracim
    Feb 2 at 9:35










  • $begingroup$
    From where did you bring the exercise?
    $endgroup$
    – mathex
    Feb 2 at 9:36










  • $begingroup$
    We don't need to know the distribution of X. So the exercise is true!
    $endgroup$
    – mathex
    Feb 2 at 9:38










  • $begingroup$
    it's from an exam, the teacher said he found it in this book : amazon.fr/…
    $endgroup$
    – rapidracim
    Feb 2 at 9:42
















1












1








1





$begingroup$

$E[e^{XY}|X]$ exists since $0 leq e^{XY}$ (it's an extension from $L^2$ to non negative variables!!)



Let's suppose that we don't know the distribution of $X$. And suppose that $E[e^{frac{X^2}{2}}]<+infty$



Observe that:



$$frac{1}{sqrt{2pi}}int_{mathbb{R}}(int_{mathbb{R}}e^{|xy|}e^{-frac{1}{2}y^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]0;+infty[}e^{-frac{1}{2}(y-|x|)^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]-|x|;+infty[}e^{-frac{1}{2}u^2}du)dP_X(x) leq frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{mathbb{R}}e^{-frac{1}{2}u^2}du)dP_X(x) leq 2E[e^{frac{X^2}{2}}]<+infty$$



And then the equivalence!! (the exercise is true if the distribution of $X$ is unknown)






share|cite|improve this answer









$endgroup$



$E[e^{XY}|X]$ exists since $0 leq e^{XY}$ (it's an extension from $L^2$ to non negative variables!!)



Let's suppose that we don't know the distribution of $X$. And suppose that $E[e^{frac{X^2}{2}}]<+infty$



Observe that:



$$frac{1}{sqrt{2pi}}int_{mathbb{R}}(int_{mathbb{R}}e^{|xy|}e^{-frac{1}{2}y^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]0;+infty[}e^{-frac{1}{2}(y-|x|)^2}dy)dP_X(x)=frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{]-|x|;+infty[}e^{-frac{1}{2}u^2}du)dP_X(x) leq frac{2}{sqrt{2pi}}int_{mathbb{R}}e^{frac{x^2}{2}}(int_{mathbb{R}}e^{-frac{1}{2}u^2}du)dP_X(x) leq 2E[e^{frac{X^2}{2}}]<+infty$$



And then the equivalence!! (the exercise is true if the distribution of $X$ is unknown)







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 2 at 9:28









mathexmathex

1138




1138












  • $begingroup$
    great detail concerning the distribution of $X$
    $endgroup$
    – rapidracim
    Feb 2 at 9:35










  • $begingroup$
    From where did you bring the exercise?
    $endgroup$
    – mathex
    Feb 2 at 9:36










  • $begingroup$
    We don't need to know the distribution of X. So the exercise is true!
    $endgroup$
    – mathex
    Feb 2 at 9:38










  • $begingroup$
    it's from an exam, the teacher said he found it in this book : amazon.fr/…
    $endgroup$
    – rapidracim
    Feb 2 at 9:42




















  • $begingroup$
    great detail concerning the distribution of $X$
    $endgroup$
    – rapidracim
    Feb 2 at 9:35










  • $begingroup$
    From where did you bring the exercise?
    $endgroup$
    – mathex
    Feb 2 at 9:36










  • $begingroup$
    We don't need to know the distribution of X. So the exercise is true!
    $endgroup$
    – mathex
    Feb 2 at 9:38










  • $begingroup$
    it's from an exam, the teacher said he found it in this book : amazon.fr/…
    $endgroup$
    – rapidracim
    Feb 2 at 9:42


















$begingroup$
great detail concerning the distribution of $X$
$endgroup$
– rapidracim
Feb 2 at 9:35




$begingroup$
great detail concerning the distribution of $X$
$endgroup$
– rapidracim
Feb 2 at 9:35












$begingroup$
From where did you bring the exercise?
$endgroup$
– mathex
Feb 2 at 9:36




$begingroup$
From where did you bring the exercise?
$endgroup$
– mathex
Feb 2 at 9:36












$begingroup$
We don't need to know the distribution of X. So the exercise is true!
$endgroup$
– mathex
Feb 2 at 9:38




$begingroup$
We don't need to know the distribution of X. So the exercise is true!
$endgroup$
– mathex
Feb 2 at 9:38












$begingroup$
it's from an exam, the teacher said he found it in this book : amazon.fr/…
$endgroup$
– rapidracim
Feb 2 at 9:42






$begingroup$
it's from an exam, the teacher said he found it in this book : amazon.fr/…
$endgroup$
– rapidracim
Feb 2 at 9:42




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096530%2fshow-that-ex2-2-in-l1-iff-exy-in-l1-iff-exy-in-l1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith