The decomposition for a symmetric positiv definite matrix is unique
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I have applied the Cholesky decomposition and found that $A=tilde{L}cdot tilde{L}^T$ where
begin{equation*}tilde{L}=begin{pmatrix}frac{1}{sqrt{2}} & 0 & 0 & 0 \ frac{sqrt{2}}{5} & sqrt{frac{21}{50}} & 0 & 0 \ frac{sqrt{2}}{10} & frac{4sqrt{42}}{105} & frac{2sqrt{1155}}{105} & 0 \ frac{sqrt{2}}{17} & frac{13}{17sqrt{42}} & frac{142}{17sqrt{1155}} & sqrt{frac{298}{15895}}end{pmatrix} text{ und } tilde{L}^T=begin{pmatrix}frac{1}{sqrt{2}} & frac{sqrt{2}}{5} & frac{sqrt{2}}{10} & frac{sqrt{2}}{17} \ 0 & sqrt{frac{21}{50}} & frac{4sqrt{42}}{105} & frac{13}{17sqrt{42}} \ 0 & 0 & frac{2sqrt{1155}}{105} & frac{142}{17sqrt{1155}} \ 0 & 0 & 0 & sqrt{frac{298}{15895}} end{pmatrix}end{equation*}
Is that correct?
I want to show that the decomposition for a symmetric positiv definite matrix is unique and it is given as a hint that we have to use the LU decomposition.
Could you explain to me how we can do that?
matrices matrix-decomposition lu-decomposition
$endgroup$
add a comment |
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I have applied the Cholesky decomposition and found that $A=tilde{L}cdot tilde{L}^T$ where
begin{equation*}tilde{L}=begin{pmatrix}frac{1}{sqrt{2}} & 0 & 0 & 0 \ frac{sqrt{2}}{5} & sqrt{frac{21}{50}} & 0 & 0 \ frac{sqrt{2}}{10} & frac{4sqrt{42}}{105} & frac{2sqrt{1155}}{105} & 0 \ frac{sqrt{2}}{17} & frac{13}{17sqrt{42}} & frac{142}{17sqrt{1155}} & sqrt{frac{298}{15895}}end{pmatrix} text{ und } tilde{L}^T=begin{pmatrix}frac{1}{sqrt{2}} & frac{sqrt{2}}{5} & frac{sqrt{2}}{10} & frac{sqrt{2}}{17} \ 0 & sqrt{frac{21}{50}} & frac{4sqrt{42}}{105} & frac{13}{17sqrt{42}} \ 0 & 0 & frac{2sqrt{1155}}{105} & frac{142}{17sqrt{1155}} \ 0 & 0 & 0 & sqrt{frac{298}{15895}} end{pmatrix}end{equation*}
Is that correct?
I want to show that the decomposition for a symmetric positiv definite matrix is unique and it is given as a hint that we have to use the LU decomposition.
Could you explain to me how we can do that?
matrices matrix-decomposition lu-decomposition
$endgroup$
add a comment |
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I have applied the Cholesky decomposition and found that $A=tilde{L}cdot tilde{L}^T$ where
begin{equation*}tilde{L}=begin{pmatrix}frac{1}{sqrt{2}} & 0 & 0 & 0 \ frac{sqrt{2}}{5} & sqrt{frac{21}{50}} & 0 & 0 \ frac{sqrt{2}}{10} & frac{4sqrt{42}}{105} & frac{2sqrt{1155}}{105} & 0 \ frac{sqrt{2}}{17} & frac{13}{17sqrt{42}} & frac{142}{17sqrt{1155}} & sqrt{frac{298}{15895}}end{pmatrix} text{ und } tilde{L}^T=begin{pmatrix}frac{1}{sqrt{2}} & frac{sqrt{2}}{5} & frac{sqrt{2}}{10} & frac{sqrt{2}}{17} \ 0 & sqrt{frac{21}{50}} & frac{4sqrt{42}}{105} & frac{13}{17sqrt{42}} \ 0 & 0 & frac{2sqrt{1155}}{105} & frac{142}{17sqrt{1155}} \ 0 & 0 & 0 & sqrt{frac{298}{15895}} end{pmatrix}end{equation*}
Is that correct?
I want to show that the decomposition for a symmetric positiv definite matrix is unique and it is given as a hint that we have to use the LU decomposition.
Could you explain to me how we can do that?
matrices matrix-decomposition lu-decomposition
$endgroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I have applied the Cholesky decomposition and found that $A=tilde{L}cdot tilde{L}^T$ where
begin{equation*}tilde{L}=begin{pmatrix}frac{1}{sqrt{2}} & 0 & 0 & 0 \ frac{sqrt{2}}{5} & sqrt{frac{21}{50}} & 0 & 0 \ frac{sqrt{2}}{10} & frac{4sqrt{42}}{105} & frac{2sqrt{1155}}{105} & 0 \ frac{sqrt{2}}{17} & frac{13}{17sqrt{42}} & frac{142}{17sqrt{1155}} & sqrt{frac{298}{15895}}end{pmatrix} text{ und } tilde{L}^T=begin{pmatrix}frac{1}{sqrt{2}} & frac{sqrt{2}}{5} & frac{sqrt{2}}{10} & frac{sqrt{2}}{17} \ 0 & sqrt{frac{21}{50}} & frac{4sqrt{42}}{105} & frac{13}{17sqrt{42}} \ 0 & 0 & frac{2sqrt{1155}}{105} & frac{142}{17sqrt{1155}} \ 0 & 0 & 0 & sqrt{frac{298}{15895}} end{pmatrix}end{equation*}
Is that correct?
I want to show that the decomposition for a symmetric positiv definite matrix is unique and it is given as a hint that we have to use the LU decomposition.
Could you explain to me how we can do that?
matrices matrix-decomposition lu-decomposition
matrices matrix-decomposition lu-decomposition
asked Jan 31 at 19:14
Mary StarMary Star
3,10982476
3,10982476
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095335%2fthe-decomposition-for-a-symmetric-positiv-definite-matrix-is-unique%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095335%2fthe-decomposition-for-a-symmetric-positiv-definite-matrix-is-unique%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown